• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A computational fluid dynamics simulation model for flare analysis and control

Castiñeira Areas, David, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
12

Metodologia de projeto de queimadores a jato para fornos de clínquer / Design methodology of jet burners for clinker kiln

Fernandes, Renato 18 August 2018 (has links)
Orientador: Waldir Antônio Bizzo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-18T17:06:17Z (GMT). No. of bitstreams: 1 Fernandes_Renato_M.pdf: 7631607 bytes, checksum: 14334de2da1bd698c87a4fd0efbed3f4 (MD5) Previous issue date: 2011 / Resumo: Os queimadores a jato são caracterizados pela elevada quantidade de movimento na direção axial e elevada potência, estes queimadores são muito empregados em fornos rotativos, principalmente na indústria do cimento e da calcinação. O projeto de queimadores a jato é realizado usualmente aproximando o escoamento de ar primário no queimador por um modelo de escoamento compressível isentrópico em um bocal, esta aproximação leva a elevada divergência entre o projeto e a performance do equipamento em operação. Nesta tese foram desenvolvidos e empregados modelos de escoamento compressível com atrito, troca de calor e variação de área de seção para o escoamento do ar primário no interior do queimador, esta modelagem permite integrar todo o projeto do queimador desde a especificação de motores, sopradores, simulação da rede de tubos que compõe queimador, incluindo o manifold, válvulas de controle, placas de orifício, mangotes etc, inclusive relacionando o escoamento do ar primário com o jato formado pelo queimador através do emprego e também do desenvolvimento de índices aerodinâmicos que representem o jato. Os pontos de inovação incluem além da modelagem proposta também o desenvolvimento de modelo para escoamento em swirlers, aplicação da lei de Crocco em escoamentos com mudança súbita de área de seção, aplicação de modelos de entrainment etc. A modelagem matemática proposta foi empregada no desenvolvimento de um sistema computacional na qual foi usado para simular diversos queimadores em escala industrial, e as simulações obtidas foram comparadas com as medições de campo realizadas nos queimadores. Os resultados das simulações foram muito representativos com divergências de no máximo 5,0 % entre as propriedades do escoamento simuladas com as propriedades mensuradas, por exemplo, pressão, temperatura, vazão etc / Abstract: Jet burners are characterized by their high power and their high momentum in the axis direction. For that reason, these burners are widely used in rotary kilns, especially in the cement and calcination industry. The project of jet burners is based on the approximation of the primary air flow in the burner, through the development of an isentropic compressible flow model for one nozzle. This approximation leads to high differences between the project and the actual performance of the equipment. For the purposes of this thesis, models of compressible flow with friction, heat exchange and variable cross section area for primary air flow inside the burner were developed and applied. The application of these models makes possible the integration of the whole burner project, i.e. specification of motors, blowers, and the simulation of the burner's tubing system, which comprises manifold, control valves, orifices flow meters, hoses, etc. These models also provides means to relate the primary air flow to the jet formed by the burner, through the application and development of aerodynamic indexes that represent the jet. Besides proposed modeling techniques, innovations in this thesis include the development of a model for representing flow in swirlers, an application of the Crocco law for flow through sudden changing cross sections, application of entrainment models, etc. Mathematical modeling was applied in the development of a computational system, which was used to simulate diverse industrial burners. Resulting simulations were compared with measures taken from actual burners. Results obtained were highly representative, showing a variance of 5.0% at the most between simulated flow properties and measured properties, i.e. pressure, temperature, flow rate, etc / Mestrado / Termica e Fluidos / Mestre em Engenharia Mecânica
13

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES

De Vries, Jaap 2009 May 1900 (has links)
High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios ranging from 0.7 to 1.3. All experiments were performed in a new flame speed facility capable of withstanding initial pressures up to 15 atm. The facility consists of a cylindrical pressure vessel rated up to 2200 psi. Vacuums down to 30 mTorr were produced before each experiment, and mixtures were created using the partial pressure method. Ignition was obtained by an automotive coil and a constant current power supply capable of reducing the spark energy close to the minimum ignition energy. Optical cine-photography was provided via a Z-type schlieren set up and a high-speed camera (2000 fps). A full description of the facility is given including a pressure rating and a computational conjugate heat transfer analysis predicting temperature rises at the walls. Additionally, a detailed uncertainty analysis revealed total uncertainty in measured flame speed of approximately +-0.7 cm/s. This study includes first-ever measurements of methane/ethane flame speeds at elevated pressures as well as unique high pressure ethane flame speed measurements. Three chemical kinetic models were used and compared against measured flame velocities. GRI 3.0 performed remarkably well even for high-pressure ethane flames. The C5 mechanism performed acceptably at low pressure conditions and under-predicted the experimental data at elevated pressures. Measured Markstein lengths of atmospheric methane/air flames were compared against values found in the literature. In this study, Markstein lengths increased for methane/air flames from fuel lean to fuel rich. A reverse trend was observed for ethane/air mixtures with the Markstein length decreasing from fuel lean to fuel rich conditions. Flame cellularity was observed for mixtures at elevated pressures. For both methane and ethane, hydrodynamic instabilities dominated at stoichiometric conditions. Flame acceleration was clearly visible and used to determine the onset of cellular instabilities. The onset of flame acceleration for each high-pressure experiment was recorded.

Page generated in 0.0728 seconds