• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of confined fire plumes : a study of interactions between fires and surfaces

Xing, Hui Juan January 2001 (has links)
No description available.
2

Height of Flames Projecting from Compartment Openings

Goble, Keryn Sheree January 2007 (has links)
External flaming from buildings occurs as a result of a large amount of fuel being available in the room of fire origin in comparison to the amount of ventilation provided. The size of the openings in a compartment affects the amount of oxygen available within the fire room, and hence the amount of combustion that can take place inside. Excess fuel that is not burnt within the room flows out of the opening and combusts upon reaching the oxygen in the air outside. It is in this situation that flames are seen projecting out of the window. Flames projecting from openings pose the threat of fire spread from the room of fire origin. This threat increases with the size of the flames. Thus a dependable method for predicting the size of flames projecting from openings is required. This research addresses the issue of predicting flame heights projecting from openings, based on the heat release rate of a fire. The results are based on laboratory experiments and are presented in non-dimensional form, allowing application to scenarios that have not been specifically tested. This work supports the findings of other researchers, with appropriate adjustments made to compensate for differing experimental approaches. This indicates that the relationships established between the non-dimensional heat release rate and flame height are formed from a sound underlying principle. An empirical relationship between the non-dimensional flame height and heat release rate of a fire is presented in a simplified format to enable ease of use. The temperatures attained, and other observations from the compartment fire experiments are also presented and discussed. These were found to have dependence on a number of factors, with relationships varying between the individual experiments. The widely-used computational fluid dynamics model Fire Dynamics Simulator, Version 4 (FDS), was found to currently be unreliable in modelling the experimental scenarios. The results obtained were unrealistic and bore minimal resemblance to the experimental results, with extensive computational simulation time. The ability of the programme to model the compartment fire scenario requires further investigation to determine whether a finer grid resolution may improve results, or whether it is simply not able to model combustion processes involved at this stage.
3

Evaluation of Thermal Radiation Models for Fire Spread Between Objects

Fleury, Rob January 2010 (has links)
Fire spread between objects within a compartment is primarily due to the impingement of thermal radiation from the fire source. In order to estimate if or when a remote object from the fire will ignite, one must be able to quantify the radiative heat flux being received by the target. There are a variety of methods presented in the literature that attempt to calculate the thermal radiation to a target; each one based on assumptions about the fire. The performance of six of these methods, of varying complexity, is investigated in this research. This includes the common point source model, three different cylindrical models, a basic correlation and a planar model. In order to determine the performance of each method, the predictions made by the models were compared with actual measurements of radiant heat flux. This involved taking heat flux readings at numerous locations surrounding a propane gas burner. Different fire scenarios were represented by varying the burner geometry and heat release rate. Video recordings of the experiments were used to determine the mean flame heights using video image analysis software. After comparing the measured data with predictions made by the theoretical radiation methods, the point source model was found to be the best performing method on average. This was unexpected given the relative simplicity of the model in comparison to some of its counterparts. Additionally, the point source model proved to be the most robust of the six methods investigated, being least affected by the experimental variables. The Dayan and Tien method, one of the cylindrical models, was the second most accurate over the range of conditions tested in this work. Based on these findings, recommendations are made as to the most appropriate method for use in a radiation sub-model within an existing zone model software. The accuracy shown by the point source model, coupled with its ease of implementation, means that it should be suitable for such a use.
4

Characterizing the Flammability of Storage Commodities Using an Experimentally Determined B-number

Overholt, Kristopher J 14 December 2009 (has links)
"In warehouse storage applications, it is important to classify the burning behavior of commodities and rank them according to material flammability for early fire detection and suppression operations. In this study, the large-scale effects of warehouse fires are decoupled into separate processes of heat and mass transfer. As a first step, two nondimensional parameters are shown to govern the physical phenomena at the large-scale, a mass transfer number, and the soot yield of the fuel which controls the radiation observed in the large-scale. In this study, a methodology is developed to obtain a mass-transfer parameter using mass-loss (burning rate) measurements from bench-scale tests. Two fuels are considered, corrugated cardboard and polystyrene. Corrugated cardboard provides a source of flaming combustion in a warehouse and is usually the first item to ignite and sustain flame spread. Polystyrene is typically used as the most hazardous product in large-scale fire testing. A mixed fuel sample (corrugated cardboard backed by polystyrene) was also tested to assess the feasibility of ranking mixed commodities using the bench-scale test method. The nondimensional mass transfer number was then used to model upward flame propagation on 20-30 foot stacks of Class III commodity consisting of paper cups packed in corrugated cardboard boxes on rack-storage. Good agreement was observed between the model and large-scale experiments during the initial stages of fire growth."
5

Flame Spread on Composite Materials for use in High Speed Craft

Wright, Mark T. 05 November 1999 (has links)
"The use of advanced materials in the construction of high-speed craft is becoming more commonplace. However, there are certain requirements set in the High Speed Craft Code (published by IMO) that restrict the use of materials based on results from full scale room fire testing (ISO 9705). An obvious benefit would be gained by simulating the results of these full-scale tests using bench scale data from the Cone Calorimeter and LIFT apparatus. A flame-spread algorithm developed by Henri Mitler at the National Institute of Standards and Technology was selected for implementation into the zone fire model CFAST. This algorithm was modified from its original form, so that it could simulate flame spread on wall/ceiling lining materials for both sidewall and corner scenarios, including ISO 9705 as prescribed in the High Speed Craft Code. Changes to the algorithm included geometry of flame spread across the ceiling, flame height, radiation exchange, ignition burner heat flux maps, and multiple pyrolysis zones. The new flame spread algorithm was evaluated against room corner test data from four different marine composite materials tested per ISO 9705."

Page generated in 0.0418 seconds