• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field modeling of carbon monoxide production in vitiated compartment fires

Hyde, S. M. January 2000 (has links)
No description available.
2

Studies of hydrogen-air turbulent diffusion flames for subsonic and supersonic flows

Zheng, Li Li January 1993 (has links)
No description available.
3

Numerical Simulation of Non-premixed Laminar and Turbulent Flames by means of Flamelet Modelling Approaches

Claramunt Altimira, Kilian 18 February 2005 (has links)
Deep knowledge of combustion phenomena is of great scientific and technological interest. In fact, better design of combustion equipments (furnaces, boilers, engines, etc) can contribute both in the energy efficiency and in the reduction of pollutant formation. One of the limitations to design combustion equipments, or even predict simple flames, is the resolution of the mathematical formulation. Analytical solutions are not feasible, and recently numerical techniques have received enormous interest. Even though the ever-increasing computational capacity, the numerical resolution requires large computational resources due to the inherent complexity of the phenomenon (viz. multidimensional flames, finite rate kinetics, radiation in participating media, turbulence, etc). Thus, development of capable mathematical models reducing the complexity and the stiffness as well as efficient numerical techniques are of great interest.The main contribution of the thesis is the analysis and application of the laminar flamelet concept to the numerical simulation of both laminar and turbulent non-premixed flames. Assuming a one-dimensional behavior of combustion phenomena in the normal direction to the flame front, and considering an appropriate coordinates transformation, flamelet approaches reduce the complexity of the problem.The numerical methodology employed is based on the finite volume technique and a parallel multiblock algorithm is used obtaining an excellent parallel efficiency. A post-processing verification tool is applied to assess the quality of the numerical solutions.Before dealing with flamelet approaches, a co-flow partially premixed methane/air laminar flame is studied for different levels of partial premixing. A comprehensive study is performed considering different mathematical formulations based on the full resolution of the governing equations and their validation against experimental data from the literature. Special attention is paid to the prediction of pollutant formation.After the full resolution of the governing equations, the mathematical formulation of the flamelet equations and a deep study of the hypothesis assumed are presented. The non-premixed methane/air laminar flame is considered to apply the flamelet modelling approach, comparing the results with the simulations obtained with the full resolution of the governing equations. Steady flamelets show a proper performance to predict the main flame features when differential diffusion and radiation are neglected, while unsteady flamelets are more suitable to account for these effects as well as pollutant formation. Assumptions of the flamelet equations, the scalar dissipation rate modelling, and the evaluation of the Lagrangian flamelet time for unsteady flamelets are specially analysed. For the numerical simulation of turbulent flames, the mathematical formulation based on mass-weighted time-averaging techniques, using RANS EVM two-equation models is considered. The laminar flamelet concept with a presumed PDF is taken into account. An extended Eddy Dissipation Concept model is also applied for comparison purposes. A piloted non-premixed methane/air turbulent flame is studied comparing the numerical results with experimental data from the literature. A clear improvement in the prediction of slow processes is shown when the transient term in the flamelet equations is retained. Radiation is a key aspect to properly define the thermal field and, consequently, species such as nitrogen oxides. Finally, the consideration of the round-jet anomaly is of significant importance to estimate the flame front position.In conclusion, flamelet modelling simulations are revealed to be an accurate approach for the numerical simulation of laminar and turbulent non-premixed flames. Detailed chemistry can be taken into account and the stiffness of the chemistry term is solved in a pre-processing task. Pollutant formation can be predicted considering unsteady flamelets.
4

Modélisation de la combustion turbulente : application des méthodes de tabulation de la chimie détaillée l'allumage forcé / Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach

Vallinayagam pillai, Subramanian 12 January 2010 (has links)
L'optimisation des systèmes d'allumage est un paramètre critique pour la définition des foyers de combustion industriels. Des simulations aux grandes échelles (ou LES pour Large-Eddy Simulation) d'un brûleur de type bluff-body non pré-mélangé ont été menées afin de comprendre l'influence de la position de la bougie sur la probabilité d'allumage. La prise en compte de la combustion est basée sur une méthode de tabulation de la chimie détaillée (PCM-FPI pour Presumed Conditional Moments - Flame Prolongation of ILDM). Les résultats de ces simulations ont été confrontés des résultats expérimentaux disponibles dans la littérature. Dans un premier temps, les mesures de vitesse et du champ de richesse à froid sont comparées aux résultats de la simulation pour évaluer les capacités de prédiction en terme de structure de l'écoulement et de mélange turbulent. Un suivi temporel des vitesses et de la fraction de mélange est réalisé à différents points pour déterminer les fonctions de densité de probabilité (ou PDF)des variables caractéristiques de l'écoulement, à partir des champs résolus en LES. Les PDFs ainsi obtenues servent l'analyse des phénomènes d'allumages réussis ou déficients rencontrés expérimentalement. Des simulations d'allumage forcé ont été effectuées pour analyser les différents scénarios de développement de la flamme. Les corrélations entre les valeurs locales (fraction de mélange, vitesse) autour de la position d'allumage et les chances de succès de développement du noyau de gaz brûlés sont alors discutées. Enfin, une extension de la méthode PCM-FPI avec prise en compte des effets d'étirement est développée à l'aide d'une analyse asymptotique, puis confrontée aux résultats de mesures expérimentales. / The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent non-premixed burner has been performed to study the impact of spark location on ignition success. The chemistry part of the simulation is done using tabulated detailed chemistry approach. This burner was experimentally investigated by Ahmed et al at Cambridge (UK). The present work focuses on the case without swirl for which detailed measurements are available. First, cold fkow measurements of velocities and mixture fraction are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time history of velocities and mixture fraction are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES resolved instantaneous flow conditions, the experimentally observed reasons of success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs (PCM-FPI). Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between velocities and mixture fraction values at the sparking time and the success or failure of ignition are then further discussed and analysed. The rate of flame development during successful or unsuccessful ignition events are analysed and compared against experimental observations. Finally, from asymptotic flame analysis, a novel approach has been proposed to include flame straining effects in the PCM-FPI method developped at CORIA-CNRS. The new model overcomes the problem associated with classical PCM-FPI closure to model kernel quenching due to intense local turbulence. Computations are done including the flame straining effects and the effect brought by the new model on kernel development is analysed in detail.

Page generated in 0.0436 seconds