1 |
Développement de matrices mémoires non-volatiles sur support flexible pour les circuits électroniques imprimés / Development of non-volatile memory arrays on flexible substrate for printed electronic circuitsRebora, Charles 19 December 2017 (has links)
Le marché de l’électronique flexible devrait atteindre un chiffre d’affaire de plus de 10 milliards de dollars à l’horizon 2020. La réalisation de circuits dotés de flexibilité mécanique accompagnera l’essor de nouvelles applications liées à l’internet des objets ou à l’électronique grande surface. Après la logique, la mémoire est un organe fondamental de tout système électronique. Dans cette thèse, nous nous sommes intéressés au développement de mémoires non-volatiles de type CBRAM (Conductive Bridge Random Acces Memory) pour les applications électroniques flexibles. Ces mémoires possèdent une structure MEM (Métal-Électrolyte-Métal) et font partie des mémoires non volatiles émergentes de type ReRAM (Resistive RAM). L’effet mémoire est basé sur une commutation de résistance due à des phénomènes d’oxydo-réduction et de migration ionique aboutissant à la formation/dissolution d’un filament conducteur dans l’électrolyte solide. La possibilité d’utiliser des verres de chalcogénures ou encore des polymères comme électrolytes solide offre à ces mémoires un avenir prometteur pour les applications flexibles. Après avoir passé en revue les différents matériaux exploités pour la réalisation de CBRAM, nous exposerons des travaux concernant la fabrication et la caractérisation de mémoires basées sur des électrolytes de GeS$_x$ et de Ge$_X$Sb$_Y$Te$_Z$ sur substrats de silicium. Les caractéristiques I-V obtenues (phénomènes de set et reset) sont ensuite confrontées à des simulations réalisées à l’aide d’un modèle électro-thermique qui considère le courant ionique comme facteur limitant. La dernière partie de ce travail est quant à elle dédiée au développement de mémoires flexibles. / Flexible electronics market revenue is expected to exceed $10B by 2020. Duento their mechanical flexibility, flexible circuits will enable numerous developmentsnin various fields from internet-of-things applications to large area electronics. Besides logic devices, memory is the second fundamental component of any electronic system. During this thesis, we aimed at developing nonvolatile memories referred as CBRAM (Conductive-Bridge Random Access Memories) for flexible electronics applications. These devices consist in a simple Metal-Electrolyte-Metal structure. The memory effect relies on resistance switching due to the formation/dissolution of a metallic conductive filament within a solid electrolyte. The use of chalcogenide glasses or polymers layers as solid-electrolytes offers many opportunities for future for flexible applications. In a first part, memory devices based on of GeS$_x$ and de Ge$_X$Sb$_Y$Te$_Z$ solid electrolytes on silicon substrates we fabricated and electrically tested. Experimental results were then confronted to an electro-thermal model, based on ionic current, developed during this thesis. The final chapter of this manuscript is devoted to the development of flexible memories.
|
2 |
Robust Design of Low-voltage OTFT Circuits for Flexible Electronic Systems / フレキシブル電子システムに向けた低電圧有機薄膜トランジスタ回路のロバスト設計Qin, Zhaoxing 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24746号 / 情博第834号 / 新制||情||140(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 佐藤 高史, 教授 橋本 昌宜, 教授 新津 葵一 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
3 |
INVESTIGATION ON THE STRUCTURE-PROPERTY RELATIONSHIPS IN HIGHLY ION-CONDUCTIVE POLYMER ELECTROLYTE MEMBRANES FOR ALL-SOLID-STATE LITHIUM ION BATTERIESFu, Guopeng January 2017 (has links)
No description available.
|
4 |
Detecting Unauthorized Activity in Lightweight IoT DevicesJanuary 2020 (has links)
abstract: The manufacturing process for electronic systems involves many players, from chip/board design and fabrication to firmware design and installation.
In today's global supply chain, any of these steps are prone to interference from rogue players, creating a security risk.
Manufactured devices need to be verified to perform only their intended operations since it is not economically feasible to control the supply chain and use only trusted facilities.
It is becoming increasingly necessary to trust but verify the received devices both at production and in the field.
Unauthorized hardware or firmware modifications, known as Trojans,
can steal information, drain the battery, or damage battery-driven embedded systems and lightweight Internet of Things (IoT) devices.
Since Trojans may be triggered in the field at an unknown instance,
it is essential to detect their presence at run-time.
However, it isn't easy to run sophisticated detection algorithms on these devices
due to limited computational power and energy, and in some cases, lack of accessibility.
Since finding a trusted sample is infeasible in general, the proposed technique is based on self-referencing to remove any effect of environmental or device-to-device variations in the frequency domain.
In particular, the self-referencing is achieved by exploiting the band-limited nature of Trojan activity using signal detection theory.
When the device enters the test mode, a predefined test application is run on the device
repetitively for a known period. The periodicity ensures that the spectral electromagnetic power of the test application concentrates at known frequencies, leaving the remaining frequencies within the operating bandwidth at the noise level. Any deviations from the noise level for these unoccupied frequency locations indicate the presence of unknown (unauthorized) activity. Hence, the malicious activity can differentiate without using a golden reference or any knowledge of the Trojan activity attributes.
The proposed technique's effectiveness is demonstrated through experiments with collecting and processing side-channel signals, such as involuntarily electromagnetic emissions and power consumption, of a wearable electronics prototype and commercial system-on-chip under a variety of practical scenarios. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
|
Page generated in 0.0731 seconds