• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards an understanding of the mechanisms of acellular zone formation in sutured tendons

Al Youha, Sarah January 2011 (has links)
Fibrotic diseases account for an estimated 45% of the total number of deaths in the developed world (Wynn 2007). Tendons are an excellent model for studying the dysregulated response which leads to fibrosis, as tendons have an organized, parallel matrix, in which tissue defects could easily be distinguished. Wong et al. (2006b) demonstrated the presence of a bell-shaped region around sutures in tendons that was devoid of cells in histological sections. The mechanisms of the formation of this acellular zone, that was also noted in cornea and cartilage (Matsuda et al. 1999; Hunziker and Stähli 2008), were unknown. It was hypothesized that the acellular zone was formed by cell death and that suturing caused alterations to the extracellular matrix of sutured regions of tendon, which made the acellular zone refractory to cellular re-population. The acellular zone was tracked in sutured tendons for up to a year to determine the temporal properties of the acellular zone. Electron microscopic and time lapse studies were carried out to determine if the acellular zone formed by cell migration or cell death. Microarray analysis was conduced to confirm this and to reveal potential molecular targets for future studies. The extracellular matrix of sutured tendons was studied by electron, atomic, scanning and polarized light microscopy and mechanical measurements were obtained using nanoindentation. It was concluded that the acellular zone formed within 24 hours and persisted for up to a year. Tension and size of the suture's grasp were also shown to be important for acellular zone formation. Cell death was the main effector of acellular zone formation. Microarray analysis showed evidence of upregulation of inflammatory mediators and programmed necrosis pathways. The sutured extracellular matrix was denser, more disorganized and had a lower Young's modulus than unsutured regions of the same tendon. These differences in the properties of the extracellular matrix of sutured tendons may be the cause of the persistence of the acellular zone.
2

A Comparison of the outcomes of two rehabilitation protocols after flexor tendon repair of the hand at Chris Hani Baragwanath Academic Hospital

Wentzel, Roxanne January 2017 (has links)
Flexor tendon repair of the hand and rehabilitation are frequently discussed between hand surgeons and therapists. This is mainly due to the poor outcomes commonly achieved after this type of surgery. There are many patients in public hospitals in South Africa who require flexor tendon repair surgery. They are regularly sent to therapists for rehabilitation, where the early passive motion protocol is commonly implemented. Although the early active motion protocol has yielded improved results globally, there is limited evidence on the comparison of the outcomes of these two protocols in the South African context. The aim of the study was to compare the outcomes of an early active motion protocol to the outcomes of an early passive motion protocol in patients with zone II to IV flexor tendon repairs of the hand, attending rehabilitation at Chris Hani Baragwanath Academic Hospital. The study was a quantitative single-blinded comparative controlled trial. Forty-six patients who sustained a zone II-IV flexor tendon injury were recruited for the study and equally distributed between the two groups (early active motion and early passive motion). Out of these participants, 11 did not return for the initial assessment at four weeks post-surgery and were therefore excluded. There were 19 participants in the early active motion group and 16 participants in the early passive motion group. Results were collected and classified at 4, 8 and 12 weeks post-surgery. Data collection took place from December 2014 to January 2016 in the Chris Hani Baragwanath Academic Hospital Hand Unit. At 12 weeks post-surgery, the total active motion, fingertip to table, and distal palmar crease measurements were similar between the two groups. Tendon rupture occurred in 8.57% (n=3, early active motion = 5.71%, early passive motion = 2.86%) of patients. This study found that there was no difference in outcomes between the two groups. Therefore, either protocol could be implemented in South African public hospitals. However, since the early active motion protocol takes less time to implement, this protocol is recommended. A study with a greater magnitude would be necessary to determine a significant comparison between the two groups; however, this is challenging due to poor patient compliance. / Dissertation (MOccupational Therapy)--University of Pretoria, 2017. / Occupational Therapy / MOccupational Therapy / Unrestricted
3

Nitinol shape memory alloy in flexor tendon repair

Karjalainen, T. (Teemu) 27 November 2012 (has links)
Abstract Early motion is crucial for tendon healing and functional results after flexor tendon repair in the fingers. Motion, however, causes stress in the repair site, which can result in failure of the repair. A flexor tendon repair is made with fine calibre sutures, which sets exceptional requirements for the suture materials used in flexor tendon repair. Nitinol (nickel-titanium alloy) is a shape memory alloy, which can exist in two temperature-dependent forms, soft martensite and stiff austenite. It is possible to fabricate a nitinol wire that is soft and pliable, yet has high tensile strength. It also has excellent biocompatibility. Therefore, it is a potential candidate flexor tendon repair suture material. This study evaluates biomechanical aspects of martensite nitinol wire as a flexor tendon repair suture material. The study hypothesis was that nitinol wire improves the strength of the repairs compared with the repairs made with conventional suture materials. It was found that nitinol core repairs and circumferential repairs performed significantly better when compared with repairs made with commonly used braided polyester and polypropylene of equal calibre. To further optimise the performance of the nitinol wire in tendon surgery, two experimental models were developed to study the suture-tendon interface. The aim was to prevent pull-out of the suture loop so that surgeons could have full advantage of the tensile strength of the nitinol suture. First, it was tested whether it is possible to improve the suture’s ability to grip the tendon tissue by changing the suture type from monofilament to multifilament. Multifilament suture loops reached higher pull-out strength when compared with round monofilament loops when a locking loop was used. Subsequently, the grip of four different previously reported core repair loops was tested. Based on their failure mechanism, two novel loops were developed. The novel loops demonstrated superior ability to grip the tendon. The novel loops can be useful with high tensile strength suture materials and in repairs, which are prone to suture pull-out. / Tiivistelmä Varhainen korjauksen jälkeinen aktiivinen kuntoutus on osoittautunut hyödylliseksi jänteen paranemiselle. Varhainen liike altistaa korjauksen kuormitukselle, joka voi johtaa korjauksen pettämiseen. Korjaukset tehdään ohuilla langoilla. Tämä asettaa erityisiä vaatimuksia jännekorjauksessa käytettävälle ommelainemateriaalille. Nikkeli-titaani (nitinoli) on nk. muistimetalli. Sillä on kaksi lämpötilariippuvaista muotoa: pehmeä martensiitti ja jäykkä austeniitti. Nitinolista voidaan valmistaa ohutta pehmeää ja taipuisaa lankaa, jonka vetolujuus on suuri. Nitinolin siedettävyys jännekudoksessa on todettu hyväksi, minkä vuoksi se on lupaava materiaali käytettäväksi jännekorjauksissa. Tässä tutkimuksessa kokeiltiin martensiittisen nitinolilangan käyttöä jänteen ydinompeleena ja pintaompeleena. Olettamuksena oli, että nitinolilangalla saadaan kestävämpiä korjauksia kuin nykyään käytössä olevilla langoilla. Tulosten mukaan nitinolilangalla tehdyt korjaukset olivat kestävämpiä, kun niitä verrattiin saman paksuiseen punottuun polyesteriin ja polypropyleeniin. Lisäksi kehitimme kaksi mallia, joiden tarkoituksena oli parantaa nitinolilankasilmukan pitoa jännekudoksesta. Tarkoituksena oli löytää keinoja, joilla langan otetta jännekudoksesta voidaan parantaa ja langan hyvät vetolujuusominaisuudet pääsevät oikeuksiinsa. Ensin muutimme langan muotoa perinteisestä yksisäikeisestä pyöreästä monisäikeiseen muotoon. Monisäikeisen langan läpileikkausvoima oli huomattavasti suurempi kuin yksisäikeisen pyöreän langan. Ero oli havaittavissa vain, kun käytettiin lukitsevaa silmukkaa. Tämän jälkeen testasimme neljän perinteisesti käytetyn korjaustekniikan silmukan pitokykyä ja tulosten perusteella kehitimme kaksi uutta silmukkaa. Työssä kehitetyt silmukat pitivät kiinni jänteestä huomattavasti paremmin kuin perinteiset silmukat. Työssä kehitetyillä silmukoilla voidaan optimoida vahvojen ommelainemateriaalien suorituskyky jännekirurgiassa.

Page generated in 0.0751 seconds