Spelling suggestions: "subject:"flight maneuver""
1 |
Klasifikace testovacích manévrů z letových dat / Classification of Testing Maneuvers from Flight DataFuniak, Martin January 2015 (has links)
Zapisovač letových údajů je zařízení určené pro zaznamenávání letových dat z různých senzorů v letadlech. Analýza letových údajů hraje důležitou roli ve vývoji a testování avioniky. Testování a hodnocení charakteristik letadla se často provádí pomocí testovacích manévrů. Naměřená data z jednoho letu jsou uložena v jednom letovém záznamu, který může obsahovat několik testovacích manévrů. Cílem této práce je identi kovat základní testovací manévry s pomocí naměřených letových dat. Teoretická část popisuje letové manévry a formát měřených letových dat. Analytická část popisuje výzkum v oblasti klasi kace založené na statistice a teorii pravděpodobnosti potřebnou pro pochopení složitých Gaussovských směšovacích modelů. Práce uvádí implementaci, kde jsou Gaussovy směšovací modely použité pro klasifi kaci testovacích manévrů. Navržené řešení bylo testováno pro data získána z letového simulátoru a ze skutečného letadla. Ukázalo se, že Gaussovy směšovací modely poskytují vhodné řešení pro tento úkol. Další možný vývoj práce je popsán v závěrečné kapitole.
|
2 |
Automatic Flight Maneuver Identification Using Machine Learning MethodsBodin, Camilla January 2020 (has links)
This thesis proposes a general approach to solve the offline flight-maneuver identification problem using machine learning methods. The purpose of the study was to provide means for the aircraft professionals at the flight test and verification department of Saab Aeronautics to automate the procedure of analyzing flight test data. The suggested approach succeeded in generating binary classifiers and multiclass classifiers that identified six flight maneuvers of different complexity from real flight test data. The binary classifiers solved the problem of identifying one maneuver from flight test data at a time, while the multiclass classifiers solved the problem of identifying several maneuvers from flight test data simultaneously. To achieve these results, the difficulties that this time series classification problem entailed were simplified by using different strategies. One strategy was to develop a maneuver extraction algorithm that used handcrafted rules. Another strategy was to represent the time series data by statistical measures. There was also an issue of an imbalanced dataset, where one class far outweighed others in number of samples. This was solved by using a modified oversampling method on the dataset that was used for training. Logistic Regression, Support Vector Machines with both linear and nonlinear kernels, and Artifical Neural Networks were explored, where the hyperparameters for each machine learning algorithm were chosen during model estimation by 4-fold cross-validation and solving an optimization problem based on important performance metrics. A feature selection algorithm was also used during model estimation to evaluate how the performance changes depending on how many features were used. The machine learning models were then evaluated on test data consisting of 24 flight tests. The results given by the test data set showed that the simplifications done were reasonable, but the maneuver extraction algorithm could sometimes fail. Some maneuvers were easier to identify than others and the linear machine learning models resulted in a poor fit to the more complex classes. In conclusion, both binary classifiers and multiclass classifiers could be used to solve the flight maneuver identification problem, and solving a hyperparameter optimization problem boosted the performance of the finalized models. Nonlinear classifiers performed the best on average across all explored maneuvers.
|
Page generated in 0.0512 seconds