• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anatomical and Morphological Responses of Cardiospermum Halicacabum L. (Balloon Vine), to Four Levels of Water Availability

Dempsey, Matthew Anthony 05 1900 (has links)
C. halicacabum (Sapindaceae) is an invasive plant that is considered a nuisance species in Texas riparian environments. Little is known of the tolerance of C. halicacabum to flooding and drought; however, this information may provide insight into the characteristics that contribute to C. halicacabum purported invasiveness. C. halicacabum seedlings (n = 92) were exposed to one of four levels of water availability (flooded, saturated, intermediate and dry) over six weeks under greenhouse conditions. Plant performance was affected by water availability; however, there was no effect on survivorship. Flooded and saturated plants exhibited morphological adaptations; producing adventitious roots, hypertrophy, and aerenchyma tissue. Morphological measures, anatomical responses, and patterns of biomass allocation all indicate that C. halicacabum is able to survive periodic inundation, perform in saturation, and establish and thrive on the drier end of a moisture gradient.
2

Performance of Submerged Cool-Season Annual Crops as a Potential Fish Habitat Enhancement Strategy of Reservoir Mudflats

Coppola, Giancarlo 03 May 2019 (has links)
Sedimentation and drawdown-induced habitat degradation limits reproduction of structure-associated fishes in flood control reservoirs. Littoral habitat enhancement can be accomplished by planting fast growing crops during winter, when lakebeds are exposed, to provide fish habitat during spring flooding. It remains unclear if species of crops differ in their submerged persistence or habitat quality to fish. I submerged six species of cool-season annual crops in mesocosms and monitored plant architecture over time. Adult plantings of two grasses persisted long enough to potentially be used by juvenile fishes in reservoirs. To assess the habitat quality provided by crops, I evaluated selection by juvenile Bluegills and adult Largemouth Bass in outdoor mesocosms. Bluegills selected Balansa Clover the most and Largemouth Bass selected annual Ryegrass. Results suggest some clovers may provide nursery habitat but degrade rapidly once submerged and dense annual grasses persist well and provide favorable habitat for prey and predator fish.
3

Assessing the flood tolerance, physiological mechanism, and nutrient mitigation potential of short rotation woody crops planted on seasonally flooded marginal land of the Lower Mississippi Alluvial Valley

Kyaw, Thu Ya 09 August 2022 (has links) (PDF)
In 2019, the Mississippi River watershed had a record-long flooding, which was comparable with the 1927 Great Mississippi River Flood. This study leveraged this flooded condition to assess the flood tolerance of eastern cottonwood (Populus deltoides) and black willow (Salix nigra) planted as short rotation woody crops (SRWCs) on seasonally flooded marginal land of the Lower Mississippi Alluvial Valley (LMAV) in 2018. The survival/mortality prediction models developed by using hydrologic and environmental variables suggested that only high flood depth affected the survival of black willow. However, eastern cottonwood was threatened by flood depth, flood duration, and cumulative flooding temperature calculated by summing air temperatures while trees were flooded in 2019, 2020, and 2021. During the growing season, the models predicted that black willow could tolerate flood depth of 1.38 m in April, 1.52 m in May, and 0.74 m in June, while eastern cottonwood could tolerate 1.18 m in April, 0.86 m in May, and 0.85 m in June. Due to having higher flood tolerance thresholds, black willow had better survival and biomass production than eastern cottonwood. This study also identified critical physiological parameters that affected the biomass productivity of eastern cottonwood, black willow, and American sycamore (Platanus occidentalis). Results showed that the growth of black willow was driven by nitrogen per unit leaf area (R2 = 0.41 and P-value = 0.004) and photosynthetic nitrogen use efficiency (R2 = 0.27 and P-value = 0.03); American sycamore was determined by stomatal conductance (R2 = 0.68 and P-value = 0.04) and transpiration rate (R2 = 0.70 and P-value = 0.04); and eastern cottonwood was not affected by either water or nitrogen factors. Understanding physiological strategies of these species provides useful information when matching site-species for riparian restoration in the LMAV. This study also found that a SRWC plantation could mitigate agricultural runoff by removing 78 to 83% of nitrate-nitrogen and 70 to 73% of orthophosphate-phosphorus from the groundwater before discharge to the Yazoo River. Therefore, rather than abandoning these areas, establishing SRWC plantations for bioenergy on marginal cropland can mitigate agricultural nutrient runoff and improve the water quality of the LMAV.

Page generated in 0.0715 seconds