• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 15
  • 14
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Linking fatty acids in the diet and tissues to quality of larval southern flounder (Paralichthys lethostigma)

Oberg, Erik Winston 22 October 2014 (has links)
Essential fatty acids are necessary for growth, survival, and development of larval fishes, but there is limited information on the essential fatty acid requirements of larval southern flounder (Paralichthys lethostigma). The objectives of this study were to elucidate connections between dietary supply of docosahexaenoic acid (DHA) and arachidonic acid (ARA) and deposited fatty acids in the head or body, and then link diet and stored fatty acids in the head or body with larval quality traits. From 4-15 days posthatch (dph), southern flounder larvae were fed rotifers enriched with four different combinations of DHA-rich Algamac 3050 and ARA-rich Algamac ARA. Fatty acid concentrations in the head and body were measured at 15 dph, and relationships between fatty acids in head or body and in the diet were determined. Larval quality traits, including specific growth rate (SGR), survival, and eight behavioral performance variables were measured. Results showed that concentrations of DHA and ARA in the head and in the body were correlated with concentrations of DHA and ARA in the diet. Growth rate did not vary among the four diets, but survival was positively correlated with the amount of lipid in the diet. Responsiveness to a visual stimulus was positively correlated with the concentration of DHA in the diet, the ratio DHA:EPA in the head, and total energy content of the diet. Turning rate during routine swimming was correlated with body DHA. This study demonstrates the influence of DHA content, total lipid content, and energy levels in the diet of southern flounder and provides a foundation for future studies examining causal factors of recruitment variability or larviculture production success. / text
32

Elucidating the signal cascades induced by progestins that mediate sperm hypermotility in Atlantic croaker (Micropogonias undulatus) and southern flounder (Paralichthys lethostigma)

Tan, Wenxian, active 21st century 02 March 2015 (has links)
The overall goal of this research was to verify the involvement of membrane progestin receptor alpha (mPRα) in mediating progestin-stimulated sperm hypermotility in the Atlantic croaker and southern flounder. Sperm motility in Atlantic croaker and southern flounder were tested with both the endogenous progestin, 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S) or the selective mPRα agonist, 10-ethenyl-19-norprogesterone (Org OD 02-0). In croaker, the Pi3k/Akt/Pde and ErbB2/Mapk intracellular signaling pathways were examined. The role of mPRα in mediating sperm hypermotility and fertility in southern flounder was also studied. The effects of seasonal hypoxia on sperm motility in croaker were investigated in a field study in the northern Gulf of Mexico in the fall of 2010. Finally, the effects of acidified activator solution (simulating ocean acidification) were studied in the laboratory. In vitro, Org OD 02-0 mimicked the stimulatory actions of 20β-S in inducing sperm hypermotility and intracellular signaling cascades in croaker and flounder sperm, indicating that mPRα is the mediator of progestin signaling in the sperm of these species. In croaker sperm, both the Pi3k/Akt/Pde and ErbB2/Mapk intracellular signaling pathways were shown to be important mediators of progestin-induced sperm hypermotility, suggesting novel functions of G [subscript olf] βγ-subunits in teleost sperm. In flounder sperm, mPRα was shown to be important in mediating sperm hypermotility as only high motility sperm with high expression of mPRα were responsive to progestin stimulation, resulting in higher fertilization success compared to low motility sperm. A single LHRHa injection resulted in increased sperm motility and fertility, associated with an increase in mPRα expression in the sperm plasma membrane. The results also suggest that the mPRα/Acy/cAMP pathway first described in croaker sperm is present in flounder sperm. Field studies of male Atlantic croaker exposed to chronic seasonal hypoxia showed that hypoxia exposure resulted in smaller gonads, lower spermatogenesis, reduced testicular mPRα expression, and in some sites, reduced sperm motility. Studies with croaker sperm using acidified activator solution to simulate ocean acidification indicated that croaker sperm were sensitive to environmental insult. Furthermore, the results suggested that the progestin signaling mechanism is more sensitive to changes in ocean pH levels than the mechanism that controls sperm motility. / text
33

Sex determination in southern flounder, Paralichthys lethostigma from the Texas Gulf Coast and implications of climate change

Montalvo, Avier José 16 February 2011 (has links)
In marine flatfish of the genus Paralichthys, temperature plays a large role in sex determination. Thus, global climate change could have significant effects on southern flounder (Paralichthys lethostigma), a commercially and recreationally important flatfish whose populations have steadily declined in Texas in the last 25 years. The most susceptible areas to global climate change are shallow water environments, particularly estuaries, which serve as essential nursery habitats for juvenile southern flounder. While in the estuaries, juveniles develop, and sex is determined. Juvenile southern flounder possess genotypic sex determination; however, the sex of females is highly influenced by temperature and can result in sex reversal. The temperature-sensitive enzyme complex responsible for estrogen biosynthesis in vertebrates is aromatase cytochrome P450 (P450arom), a critical component in ovarian differentiation that can be used to measure presumptive males and females exposed to a gradient of temperatures. This research identifies that sex is influenced by temperature between 35 and 65 mm total length (TL) and establishes that increases in temperature from 18 °C during this size range produce increasingly male skewed sex ratios in southern flounder from Texas. The findings presented here are critical for optimizing production of females in culture and for developing stock enhancement programs of southern flounder in Texas. / text
34

The type I antifreeze protein gene family in Pleuronectidae

Nabeta, Kyra Keiko 02 February 2009 (has links)
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis. / Thesis (Master, Biochemistry) -- Queen's University, 2009-01-30 13:38:08.346
35

Investigation of Antifreeze Protein Activity in Blue Mussels and Amyloid-Like Transition in a Predominant Winter Flounder Serum Antifreeze Protein

Dubé, André 21 August 2012 (has links)
The study of marine antifreeze proteins has provided new findings. The blue mussel (Mytilus edulis) was known to have antifreeze activity; however, the antifreeze protein or other molecule responsible has never been characterized. Activity was evident in mussels from each of the Maritime provinces, Canada. The antifreeze molecule was shown to alter ice crystal morphology. It functioned over a wide range of pH values and it showed protease resistance. Nonetheless, its purification was not achieved. A winter flounder (Pseudopleuronectes americanus) ?-helical antifreeze protein, wflAFP6, has been shown to form amyloid-like fibrils during freezing. Separation of different aspects of the freezing process demonstrated that equilibrium freezing with an ice template is necessary for conversion of the wflAFP6 to the amyloid-like conformation. Amyloid-like conformation was determined by dye binding and electron microscopy. The effects of wflAFP6 concentration and solution properties were determined in order to better understand the process of conversion.
36

Spatial and Temporal Shifts in Estuarine Nursery Habitats Used by Juvenile Southern Flounder (Paralichthys lethostigma)

Furey, Nathaniel 2012 August 1900 (has links)
Southern flounder (Parlichthys lethostigma) is a recreationally and commercially important flatfish species found in the Gulf of Mexico, and recent analyses indicate that the northern Gulf of Mexico population is in decline. For proper management, knowledge of habitats used throughout the juvenile stage is needed. The aim of the current study is to examine habitat use of young-of-year (YOY) southern flounder in the Galveston Bay complex using habitat distribution models and acoustic telemetry. A set of habitat distribution models examined how habitat use changes during the first year of life. In addition, southern flounder were tagged with acoustic telemetry transmitters and monitored with a novel receiver array that allows for measurements of fine-scale movements. These movements were compared to habitat maps to examine habitat selection. Habitat distribution models determined that habitat requirements for southern flounder change with ontogeny and season. Newly settled southern flounder were most influenced by physicochemical parameters and the presence of seagrass beds. YOY southern flounder, however, showed increased occurrence at freshwater inlets during summer and fall months, and occurrence decreased at tidal inlets during the fall. Predictions of habitat suitability across the Galveston Bay complex indicate that the factors influencing occurrence of southern flounder change with season, ontogeny, and availability of suitable habitats. With acoustic telemetry, it was apparent that habitat use by southern flounder was nonrandom and influenced by benthic and other physicochemical conditions. Habitat analyses indicated that southern flounder used sand habitats more frequently than seagrass, oyster reef, or salt marsh habitats. Telemetry results also indicated that depth and water temperature were important determinants of habitat suitability for YOY southern flounder, with individuals preferring deeper and cooler regions of the water column in Christmas Bay. Both model and telemetry analyses indicate that habitat use by YOY southern flounder is dynamic across multiple spatial and temporal scales, with distributions and movements influenced strongly by ontogenetic changes in habitat associations, temporal and spatial variability in physicochemical conditions, and tidal cycles.
37

Managing the interdisciplinary requirements of 3D geological models.

Riordan, Sarah J. January 2009 (has links)
Despite increasing computer power, the requirement to upscale 3D geological models for dynamic reservoir simulation purposes is likely to remain in many commercial environments. This study established that there is a relationship between sandbody size, cell size and changes to predictions of reservoir production as grids are upscaled. The concept of a cell width to sandbody width ratio (CSWR) was developed to allow the comparison of changes in reservoir performance as grids are upscaled. A case study of the Flounder Field in the Gippsland Basin resulted in the interpretation of three depositional environments in the intra-Latrobe reservoir interval. The sandbody dimensions associated with these depositional environments were used to build a series of 3D geological models. These were upscaled vertically and horizontally to numerous grid cell sizes. Results from over 1400 dynamic models indicate that if the CSWR is kept below 0.3 there will be a strong correlation between the average production from the upscaled grids compared to those of a much finer grid, and there will be less than 10% variation in average total field production. If the CSWR is between 0.3 and 1, there could be up to 30% difference, and once the CSWR exceeds 1.0 there is only a weak relationship between the results from upscaled grids and those of finer grids. As grids are upscaled the morphology of bodies in facies models changes, the distribution of petrophysical properties is attenuated and the structure is smoothed. All these factors result in a simplification of the fluid flow pathways through a model. Significant loss of morphology occurs when cells are upscaled to more than a half the width of the reservoir body being modelled. A simple rule of thumb is established — if the geological features of a model cannot be recognised when looking at a layer in the upscaled grid, the properties of the upscaled grid are unlikely to be similar to those of the original grid and the predictions of dynamic models may vary significantly from those of a finer grid. This understanding of the influence of sandbody size on the behaviour of upscaled dynamic models can be used in the planning stages of a reservoir modelling project. Two simple charts have been created. The first chart is for calculating the approximate number of cells in a model before it is built. The second chart is for comparing the proposed cell size against the CWSR, so that the predicted discrepancy between the ultimate production from the upscaled grid and one with much smaller cells can be assessed. These two charts enhance discussion between all interested disciplines regarding the potential dimensions of both static and upscaled dynamic models during the planning stage of a modelling project, and how that may influence the results of dynamic modelling. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375309 / Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2009
38

Managing the interdisciplinary requirements of 3D geological models.

Riordan, Sarah J. January 2009 (has links)
Despite increasing computer power, the requirement to upscale 3D geological models for dynamic reservoir simulation purposes is likely to remain in many commercial environments. This study established that there is a relationship between sandbody size, cell size and changes to predictions of reservoir production as grids are upscaled. The concept of a cell width to sandbody width ratio (CSWR) was developed to allow the comparison of changes in reservoir performance as grids are upscaled. A case study of the Flounder Field in the Gippsland Basin resulted in the interpretation of three depositional environments in the intra-Latrobe reservoir interval. The sandbody dimensions associated with these depositional environments were used to build a series of 3D geological models. These were upscaled vertically and horizontally to numerous grid cell sizes. Results from over 1400 dynamic models indicate that if the CSWR is kept below 0.3 there will be a strong correlation between the average production from the upscaled grids compared to those of a much finer grid, and there will be less than 10% variation in average total field production. If the CSWR is between 0.3 and 1, there could be up to 30% difference, and once the CSWR exceeds 1.0 there is only a weak relationship between the results from upscaled grids and those of finer grids. As grids are upscaled the morphology of bodies in facies models changes, the distribution of petrophysical properties is attenuated and the structure is smoothed. All these factors result in a simplification of the fluid flow pathways through a model. Significant loss of morphology occurs when cells are upscaled to more than a half the width of the reservoir body being modelled. A simple rule of thumb is established — if the geological features of a model cannot be recognised when looking at a layer in the upscaled grid, the properties of the upscaled grid are unlikely to be similar to those of the original grid and the predictions of dynamic models may vary significantly from those of a finer grid. This understanding of the influence of sandbody size on the behaviour of upscaled dynamic models can be used in the planning stages of a reservoir modelling project. Two simple charts have been created. The first chart is for calculating the approximate number of cells in a model before it is built. The second chart is for comparing the proposed cell size against the CWSR, so that the predicted discrepancy between the ultimate production from the upscaled grid and one with much smaller cells can be assessed. These two charts enhance discussion between all interested disciplines regarding the potential dimensions of both static and upscaled dynamic models during the planning stage of a modelling project, and how that may influence the results of dynamic modelling. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375309 / Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2009
39

EGG BUOYANCY AND SURVIVAL PROBABILITIES OF BALTIC FLOUNDER (PLATICHTHYS FLESUS) : DIFFERENCES BETWEEN SPAWNING AREAS AND INTER-ANNUAL VARIATION IN CONDITIONS FOR REPRODUCTION

Nyberg, Sofia January 2015 (has links)
The reproductive success for pelagic spawning Baltic flounders is strongly linked to the hydrodynamics in the spawning areas. Egg survival is dependent upon the ability to achieve neutral buoyancy at a depth interval where temperature and oxygen concentrations are favourable for egg development. The main focus of this thesis was to compare egg survival probabilities of pelagic eggs from Baltic flounder in the Bornholm, Gdansk and Gotland basins, prior to and after the saline water inflow in December 2014. The results showed greatly enhanced survival probabilities in Bornholm basin 2015 (p<0.01), as egg survival increased from 47% in 2014 to 100% the following year. In Gdansk basin the situation was similar, and survival probability increased from 13% to 100% (p<0.01). In Gotland basin no difference in survival probability was identified, although the dominant cause of mortality shifted from sedimentation, i.e. due to low salinity conditions in 2014, to oxygen deficiency in 2015 (p<0,01). / BONUS INSPIRE-project, the joint Baltic Sea research and development programme (Art 185), funded jointly by the European Union’s Seventh Programme for research, technological development and demonstration and the Swedish Research Council Formas
40

Intracellular pH Regulation, Acid-Base Balance , and Metabolism after Exhaustive Exercise in Rainbow Trout (Salmo gairdneri) and Starry Flounder (Platichthys stellatus)

Milligan, C. L. 09 1900 (has links)
This thesis is missing pages 87, 172 and 255. No other copies of the thesis have these pages. -Digitization Centre / This thesis examined the effects of exhaustive exercise on acid-base and metabolite status in the intracellular and extracellular compartments of two very different fish species: the active, pelagic rainbow trout, and the sluggish, benthic starry flounder. In both species, exhaustive exercise resulted in an acidosis in the extracellular compartment of mixed respiratory and metabolic origin. Despite the reduction in pHe, red blood cell pHi was well regulated, though more precisely in trout than in flounder. Catecholamines were mobilized into the blood after exercise in trout but not in flounder. Circulating catecholamines may play an important role in regulating red blood cell (RBC) pHi in trout after exercise. In trout, lactate appeared in the blood in excess of H+ ; the reverse pattern was observed in flounder. H+ appearance was similar in both species. Differential release of lactate from the muscle mass was apparently responsible for this discrepancy. After exhaustive exercise, both trout and flounder experienced a severe intracellular acidosis in the white muscle, as measured by 14c-DMO (5,5-dimethyl -2,4-oxazolidinenione) distribution. H+ and lactate were not produced in equimolar quantities, with H+ produced in excess of lactate. Muscle lactate and H+ production was about 3-fold lower in flounder than in trout. The muscle intracellular acid-base disturbance was corrected more rapidly in flounder (4-8h) than in trout (8-12h). In flounder, this occurred prior to , but in trout after , correction of the extracellular acidosis. In flounder, a more rapid correction of muscle metabolite status was associated with the more rapid correction of the intracellular acidosis. After exercise there was a reduction in the whole body extracellular fluid volume and expansion of the intracellular fluid volume, largely reflecting changes within the muscle. This fluid shift resulted in a general hemoconcentration. Exercise led to a transient increase in net H+ excretion in both trout and flounder. Negligible amounts of lactate were transferred to the water. In flounder, about 20% of the total H+ load produced passed through the extracellular space and was transiently stored in the water, which appeared to hasten correction of the intracellular acid-base disturbance. In contrast, in trout, a much smaller portion of the acid load (about 6%), though about the same absolute amount as in flounder, was transferred to the water. This appeared to expedite correction of the extracellular acidosis.The results of this thesis argue against a prominent role for the Cori cycle in the final disposition of the lactate burden produced during exercise. Instead, it is suggested that the bulk of the lactate was metabolized in situ, either by oxidation or glyconeogenesis. In flounder, this was almost the sole fate of lactate, as very little appeared in the blood space. In trout, a significant portion of the lactate was exported to the blood, which was taken up and metabolized by aerobic tissues. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.057 seconds