1 |
Estudo experimental e numérico do sistema de admissão de um motor de combustão interna / Experimental and numerical study of the intake system of an internal combustion engineSouza, Gustavo Rodrigues de 07 April 2010 (has links)
Durante o processo de admissão do ar em motores de combustão interna, nota-se que sua aspiração não é ideal, ou seja, o volume do cilindro não é completamente ocupado, devido à variação de sua massa específica e perdas de carga ao longo do sistema de alimentação. Conseqüentemente, a eficiência volumétrica no cilindro atinge valores ínfimos de desempenho, o que afeta diretamente a potência do motor. O trabalho consiste em um estudo numérico e experimental do sistema de admissão de um motor de combustão interna. A solução numérica foi obtida por um código comercial que resolve as equações de transporte, baseada nos princípios de conservação de massa, quantidade de movimento e energia, pelo método de discretização de volumes finitos. Os resultados numéricos foram validados através dos resultados obtidos em uma bancada experimental, que possibilitou medidas de vazão mássica, pressão e temperatura do ar admitido. A bancada é formada por um motor de combustão interna acionado por um motor elétrico e o estudo foi realizado sem a presença de combustível e por conseqüência sem a ocorrência de combustão. Através da utilização do software, demonstrou-se que foi possível construir um coletor inédito que proporcionou ao motor estudado um aumento de eficiência volumétrica de 6% a 3.500 rpm. / During the process of intake air in the internal combustion engine it has been noted that air flow is not ideal, i.e., the cylinder volume is not completely occupied concerning the variation of specific mass and the charge loss along the feed system. Consequently, the volumetric efficiency in the cylinder reaches low values of performance, affecting the engine power. The aims of this work were a numerical and experimental study of the intake manifold in an internal combustion engine. The numerical solution is obtained through a commercial code which solves the transport equations, according to the continuity, momentum and energy principles by the method of finite volume discretization. Numerical data were validated by the experimental results set-up, enabling the mass flow, pressure and temperature measures of the intake air. The flow bench is composed by an internal combustion engine turned on by an electric engine. The study was developed without fuel and combustion. Regarding the software, it was possible to build an original intake manifold which provides to engine studied an increase in the volumetric efficiency of 6% at 3,500 rpm.
|
2 |
Estudo experimental e numérico do sistema de admissão de um motor de combustão interna / Experimental and numerical study of the intake system of an internal combustion engineGustavo Rodrigues de Souza 07 April 2010 (has links)
Durante o processo de admissão do ar em motores de combustão interna, nota-se que sua aspiração não é ideal, ou seja, o volume do cilindro não é completamente ocupado, devido à variação de sua massa específica e perdas de carga ao longo do sistema de alimentação. Conseqüentemente, a eficiência volumétrica no cilindro atinge valores ínfimos de desempenho, o que afeta diretamente a potência do motor. O trabalho consiste em um estudo numérico e experimental do sistema de admissão de um motor de combustão interna. A solução numérica foi obtida por um código comercial que resolve as equações de transporte, baseada nos princípios de conservação de massa, quantidade de movimento e energia, pelo método de discretização de volumes finitos. Os resultados numéricos foram validados através dos resultados obtidos em uma bancada experimental, que possibilitou medidas de vazão mássica, pressão e temperatura do ar admitido. A bancada é formada por um motor de combustão interna acionado por um motor elétrico e o estudo foi realizado sem a presença de combustível e por conseqüência sem a ocorrência de combustão. Através da utilização do software, demonstrou-se que foi possível construir um coletor inédito que proporcionou ao motor estudado um aumento de eficiência volumétrica de 6% a 3.500 rpm. / During the process of intake air in the internal combustion engine it has been noted that air flow is not ideal, i.e., the cylinder volume is not completely occupied concerning the variation of specific mass and the charge loss along the feed system. Consequently, the volumetric efficiency in the cylinder reaches low values of performance, affecting the engine power. The aims of this work were a numerical and experimental study of the intake manifold in an internal combustion engine. The numerical solution is obtained through a commercial code which solves the transport equations, according to the continuity, momentum and energy principles by the method of finite volume discretization. Numerical data were validated by the experimental results set-up, enabling the mass flow, pressure and temperature measures of the intake air. The flow bench is composed by an internal combustion engine turned on by an electric engine. The study was developed without fuel and combustion. Regarding the software, it was possible to build an original intake manifold which provides to engine studied an increase in the volumetric efficiency of 6% at 3,500 rpm.
|
3 |
Zvýšení plnicí účinnosti zážehového dvoudobého motoru / Increase of Charging Efficiency of Two Stroke EngineMainuš, Jiří January 2013 (has links)
The diploma thesis introduces a design of a construction alteration whose aim is to increase the injection efficiency of the given two-stroke engine. The first chapter deals with a construction solution of the replacement of cylinder charge. The following chapters focus on the procedure of creating a 3D model of a cylinder unit through reverse engineering. Furthermore, the thesis contains a CFD simulation of the fluid flow including the evaluation of the results and experimental measurement on an aerodynamic track.
|
4 |
Numerical Studies of Flow and AssociatedLosses in the Exhaust Port of a Diesel EngineWang, Yue January 2013 (has links)
In the last decades, the focus of internal combustion engine development has moved towards more efficient and less pollutant engines. In a Diesel engine, approximately 30-40% of the energy provided by combustion is lost through the exhaust gases. The exhaust gases are hot and therefore rich of energy. Some of this energy can be recovered by recycling the exhaust gases into turbocharger. However, the energy losses in the exhaust port are highly undesired and the mechanisms driving the total pressure losses in the exhaust manifold not fully understood. Moreover, the efficiency of the turbine is highly dependent on the upstream flow conditions. Thus, a numerical study of the flow in the exhaust port geometry of a Scania heavy-duty Diesel engine is carried out mainly by using the Large Eddy Simulation (LES) approach. The purpose is to characterize the flow in the exhaust port, analyze and identify the sources of the total pressure losses. Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation results are included for comparison purposes. The calculations are performed with fixed valve and stationary boundary conditions for which experimental data are available. The simulations include a verification study of the solver using different grid resolutions and different valve lift states. The calculated numerical data are compared to existent measured pressure loss data. The results show that even global parameters like total pressure losses are predicted better by LES than by URANS. The complex three-dimensional flow structures generated in the flow field are qualitatively assessed through visualization and analyzed by statistical means. The near valve region is a major source of losses. Due to the presence of the valve, an annular, jet-like flow structure is formed where the high-velocity flow follows the valve stem into the port. Flow separation occurs immediately downstream of the valve seat on the walls of the port and also on the surface of the valve body. Strong longitudinal, non-stationary secondary flow structures (i.e. in the plane normal to the main flow direction) are observed in the exhaust manifold. Such structures can degrade the efficiency of a possible turbine of a turbocharger located downstream on the exhaust manifold. The effect of the valve and piston motion has also been studied by the Large Eddy Simulation (LES) approach. Within the exhaust process, the valves open while the piston continues moving in the combustion chamber. This process is often analyzed modeling the piston and valves at fixed locations, but conserving the total mass flow. Using advanced methods, this process can be simulated numerically in a more accurate manner. Based on LES data, the discharge coefficients are calculated following the strict definition. The results show that the discharge coefficient can be overestimated (about 20 %) when using simplified experiments, e. g. flow bench. Simple cases using fixed positions for valve and piston are contrasted with cases which consider the motion of piston and/or valves. The overall flow characteristics are compared within the cases. The comparison shows it is impossible to rebuild the dynamic flow field with the simplification with fixed valves. It is better to employ LES to simulate the dynamic flow and associated losses with valve and piston motion. / <p>QC 20131204</p>
|
Page generated in 0.0471 seconds