• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analýza proudění spalin v okolí výfukového ventilu spalovacího motoru s využitím CFD / Fluid flow analysis in vicinity of exhaust valve using CFD

Šesták, Josef January 2009 (has links)
This diploma thesis discuss a flow in a vicinity of exhaust valve using computational of fluid dynamics. In a light of current state of the problem solution this approach is forward but very sophisticated. Intention of author is description of multidimensional boundary of characteristic variables which determinates the flow behaviour for given geometry and boundary conditions. Technical knowlegde of fluid flow in vicinity of exhaust valve allow to design geometry which provide more effective cylinder flush out berofe the exhaust stroke will become. This process reduce quantity of loss work of piston and improve its effective pointers.
2

Numerical Computations of Internal Combustion Engine related Transonic and Unsteady Flows

Bodin, Olle January 2009 (has links)
<p>Vehicles with internal combustion (IC) engines fueled by hydrocarbon compounds have been used for more than 100 years for ground transportation. During the years and in particular in the last decade, the environmental aspects of IC engines have become a major political and research topic. Following this interest, the emissions of pollutants such as NO<sub>x</sub>, CO<sub>2</sub> and unburned hydrocarbons (UHC) from IC engines have been reduced considerably. Yet, there is still a clear need and possibility to improve engine efficiency while further reducing emissions of pollutants. The maximum efficiency of IC engines used in passenger cars is no more than $40\%$ and considerably less than that under part load conditions. One way to improve engine efficiency is to utilize the energy of the exhaust gases to turbocharge the engine. While turbocharging is by no means a new concept, its design and integration into the gas exchange system has been of low priority in the power train design process. One expects that the rapidly increasing interest in efficient passenger car engines would mean that the use of turbo technology will become more widespread. The flow in the IC-engine intake manifold determines the flow in the cylinder prior and during the combustion. Similarly, the flow in the exhaust manifold determines the flow into the turbine, and thereby the efficiency of the turbocharging system. In order to reduce NO<sub>x</sub> emissions, exhaust gas recirculation (EGR) is used. As this process transport exhaust gases into the cylinder, its efficiency is dependent on the gas exchange system in general. The losses in the gas exchange system are also an issue related to engine efficiency. These aspects have been addressed up to now rather superficially. One has been interested in global aspects (e.g. pressure drop, turbine efficiency) under steady state conditions.In this thesis, we focus on the flow in the exhaust port and close to the valve. Since the flow in the port can be transonic, we study first the numerical modeling of such a flow in a more simple geometry, namely a bump placed in a wind tunnel. Large-Eddy Simulations of internal transonic flow have been carried out. The results show that transonic flow in general is very sensitive to small disturbances in the boundary conditions. Flow in the wind tunnel case is always highly unsteady in the transonic flow regime with self excited shock oscillations and associated with that also unsteady boundary-layer separation. To investigate sensitivity to periodic disturbances the outlet pressure in the wind tunnel case  was varied periodically at rather low amplitude. These low amplitude oscillations caused hysteretic behavior in the mean shock position and appearance of shocks of widely different patterns. The study of a model exhaust port shows that at realistic pressure ratios, the flow is transonic in the exhaust port. Furthermore, two pairs of vortex structures are created downstream of the valve plate by the wake behind the valve stem and by inertial forces and the pressure gradient in the port. These structures dissipate rather quickly. The impact of these structures and the choking effect caused by the shock on realistic IC engine performance remains to be studied in the future.</p> / CICERO
3

Numerical Computations of Internal Combustion Engine related Transonic and Unsteady Flows

Bodin, Olle January 2009 (has links)
Vehicles with internal combustion (IC) engines fueled by hydrocarbon compounds have been used for more than 100 years for ground transportation. During the years and in particular in the last decade, the environmental aspects of IC engines have become a major political and research topic. Following this interest, the emissions of pollutants such as NOx, CO2 and unburned hydrocarbons (UHC) from IC engines have been reduced considerably. Yet, there is still a clear need and possibility to improve engine efficiency while further reducing emissions of pollutants. The maximum efficiency of IC engines used in passenger cars is no more than $40\%$ and considerably less than that under part load conditions. One way to improve engine efficiency is to utilize the energy of the exhaust gases to turbocharge the engine. While turbocharging is by no means a new concept, its design and integration into the gas exchange system has been of low priority in the power train design process. One expects that the rapidly increasing interest in efficient passenger car engines would mean that the use of turbo technology will become more widespread. The flow in the IC-engine intake manifold determines the flow in the cylinder prior and during the combustion. Similarly, the flow in the exhaust manifold determines the flow into the turbine, and thereby the efficiency of the turbocharging system. In order to reduce NOx emissions, exhaust gas recirculation (EGR) is used. As this process transport exhaust gases into the cylinder, its efficiency is dependent on the gas exchange system in general. The losses in the gas exchange system are also an issue related to engine efficiency. These aspects have been addressed up to now rather superficially. One has been interested in global aspects (e.g. pressure drop, turbine efficiency) under steady state conditions.In this thesis, we focus on the flow in the exhaust port and close to the valve. Since the flow in the port can be transonic, we study first the numerical modeling of such a flow in a more simple geometry, namely a bump placed in a wind tunnel. Large-Eddy Simulations of internal transonic flow have been carried out. The results show that transonic flow in general is very sensitive to small disturbances in the boundary conditions. Flow in the wind tunnel case is always highly unsteady in the transonic flow regime with self excited shock oscillations and associated with that also unsteady boundary-layer separation. To investigate sensitivity to periodic disturbances the outlet pressure in the wind tunnel case  was varied periodically at rather low amplitude. These low amplitude oscillations caused hysteretic behavior in the mean shock position and appearance of shocks of widely different patterns. The study of a model exhaust port shows that at realistic pressure ratios, the flow is transonic in the exhaust port. Furthermore, two pairs of vortex structures are created downstream of the valve plate by the wake behind the valve stem and by inertial forces and the pressure gradient in the port. These structures dissipate rather quickly. The impact of these structures and the choking effect caused by the shock on realistic IC engine performance remains to be studied in the future. / CICERO
4

Měření zpomalení nákladních automobilů nad 12 tun při brzdění motorem / Measuring of deceleration of heavy goods vehicles (greater than 12 tonnes) when slowing down using the motor

Süttő, Daniel January 2016 (has links)
This thesis is dealing with measuring the deceleration of lorries when they are braked by the engine. The weight of the vehicles given is bigger than 12 tons. The thesis can be divided into theoretical and practical part. In the theoretical part there are special presumptions to manage the given problem successfully. The stress is on the construction of lorries and on driving resistances which influence the process of deceleration a lot. The thesis also analyses the technical solution of each possibilities of braking and also the function of the gearbox. In the practical part the method of measuring is described. The measurement devices are also given through which the measurements were realized. The main part of this work is made by measured values of each lorries and the interpretation of measured values itself. The final evaluation of measured data are mentioned at the end of the thesis.
5

On Gas Dynamics of Exhaust Valves

Winroth, Marcus January 2017 (has links)
With increasing effects of global warming, efforts are made to make transportation in general more fuel efficient. When it comes to internal combustion engines, the most common way to improve fuel efficiency is through ‘downsizing’. Downsizing means that a smaller engine (with lower losses and less weight) performs the task of a larger engine. This is accomplished by fitting the smaller engine with a turbocharger, to recover some of the energy in the hot exhaust gases. Such engine systems need careful optimization and when designing an engine system it is common to use simplified flow models of the complex geometries involved. The exhaust valves and ports are usually modelled as straight pipe flows with a corresponding discharge or loss coefficient, typically determined through steady-flow experiments with a fixed valve and at low pressure ratios across the valve. This means that the flow is assumed to be independent of pressure ratio and quasi-steady. In the present work these two assumptions have been experimentally tested by comparing measurements of discharge coefficient under steady and dynamic conditions. The steady flow experiments were performed in a flow bench, with a maximum mass flow of 0.5 kg/s at pressures up to 500 kPa. The dynamic measurements were performed on a pressurized, 2 litre, fixed volume cylinder with one or two moving valves. Since the volume of the cylinder is fixed, the experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process. Initially in the experiments the valve was closed and the cylinder was pressurized. Once the desired initial pressure (typically in the range 300-500 kPa) was reached, the valve was opened using an electromagnetic linear motor, with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The results of this investigation show that neither the quasi-steady assumption nor the assumption of pressure-ratio independence holds. This means that if simulations of the exhaustion process is made, the discharge coefficient needs to be determined using dynamic experiments with realistic pressure ratios. Also a measure of the quasi-steadiness has been defined, relating the change in upstream conditions to the valve motion, i.e. the change in flow restriction, and this measure has been used to explain why the process cannot be regarded as quasi-steady. / <p>QC 20170306</p>
6

Opportunities to Improve Aftertreatment Thermal Management and Simplify the Air Handling Architectures of Highly Efficient Diesel Engines Incorporating Valvetrain Flexibility

Mrunal C Joshi (8231772) 06 January 2020 (has links)
In an effort to reduce harmful pollutants emitted by medium and heavy duty diesel engines, stringent emission regulations have been imposed by the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Effective aftertreatment thermal management is critical for controlling tail pipe outlevels of NOx and soot, while improved fuel efficiency is also necessary to meet greenhouse gas emissions standards and customer expectations. Engine manufacturers have developed and implemented several engine and non-engine based techniques for emission reduction, a few examples being: exhaust gas recirculation (EGR), use of delayed in-cylinder injections, exhaust throttling, electric heaters and hydrocarbon dosers. This work elaborates the use of variable valve actuation strategies for improved aftertreatment system (ATS) thermal management of a modern medium-duty diesel engine while presenting opportunities for simplification of engine air handling architecture.<div><br></div><div>Experimental results at curb idle demonstrate that exhaust valve profile modulation enables effective ATS warm-up without requiring exhaust manifold pressure (EMP) control. Early exhaust valve opening with internal exhaust gas recirculation (EEVO+iEGR) resulted in 8% lower fuel consumption and reduction in engine out emissions. Late exhaust valve opening with internal EGR in the absence of EMP control was able to reach exhaust temperature of 287<sup>◦</sup>C, without a penalty in fuel consumption or emissions compared to conventional thermal management. LEVO combined with EMP control could reach turbine outlet temperature of nearly 460<sup>◦</sup>C at curb idle.<br></div><div><br></div><div>LEVO was studied at higher speeds and loads to assess thermal management benefits of LEVO in the absence of EMP control, with an observation that LEVO can maintain desirable thermal management performance up to certain speed/load conditions, and reduction in exhaust flow rate is observed at higher loads due to the inability of LEVO to compensate for loss of boost associated with absence of EMP control.<br></div><div><br></div><div>Cylinder deactivation (CDA) combined with additional valvetrain flexibility results in low emission, fuel-efficient solutions to maintain temperatures of a warmed-up ATS. Late intake valve closing, internal EGR and early exhaust valve opening were studied with both three cylinder and two cylinder operation. Some of these strategies showed additional benefits such as ability to use earlier injections, elimination of external EGR and operation in the absence of exhaust manifold pressure control. Three cylinder operation with LIVC and iEGR is capable of reaching exhaust temperatures in excess of 230<sup>◦</sup>C with atleast 9% lower fuel consumption than three cylinder operation without VVA. Three cylinder operation with early exhaust valve opening resulted in exhaust temperature of nearly 340<sup>◦</sup>C, suitable for extended idling operation. Two cylinder operation with and without the use of valve train flexibility also resulted in turbine outlet temperature relevant for extended idling (and low load operation), while reducing fuel consumption by 40% compared to the conventional thermal management strategy.<br></div><div><br></div><div>A study comparing the relative merits of internal EGR via reinduction and negative valve overlap (NVO) is presented in order to assess trade-offs between fuel efficient stay-warm operation and engine out emissions. This study develops an understanding of the optimal valve profiles for achieving reinduction/NVO and presents VVA strategies that are not cylinder deactivation based for fuel efficient stay-warm operation. Internal EGR via reinduction is demonstrated to be a more fuel efficient strategy for ATS stay-warm. An analysis of in-cylinder content shows that NOx emissions are more strongly affected by in-cylinder O2 content than by method of internal EGR.<br></div>
7

Numerical Studies of Flow and AssociatedLosses in the Exhaust Port of a Diesel Engine

Wang, Yue January 2013 (has links)
In the last decades, the focus of internal combustion engine development has moved towards more efficient and less pollutant engines. In a Diesel engine, approximately 30-40% of the energy provided by combustion is lost through the exhaust gases. The exhaust gases are hot and therefore rich of energy. Some of this energy can be recovered by recycling the exhaust gases into turbocharger. However, the energy losses in the exhaust port are highly undesired and the mechanisms driving the total pressure losses in the exhaust manifold not fully understood. Moreover, the efficiency of the turbine is highly dependent on the upstream flow conditions. Thus, a numerical study of the flow in the exhaust port geometry of a Scania heavy-duty Diesel engine is carried out mainly by using the Large Eddy Simulation (LES) approach. The purpose is to characterize the flow in the exhaust port, analyze and identify the sources of the total pressure losses. Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation results are included for comparison purposes. The calculations are performed with fixed valve and stationary boundary conditions for which experimental data are available. The simulations include a verification study of the solver using different grid resolutions and different valve lift states. The calculated numerical data are compared to existent measured pressure loss data. The results show that even global parameters like total pressure losses are predicted better by LES than by URANS. The complex three-dimensional flow structures generated in the flow field are qualitatively assessed through visualization and analyzed by statistical means. The near valve region is a major source of losses. Due to the presence of the valve, an annular, jet-like flow structure is formed where the high-velocity flow follows the valve stem into the port. Flow separation occurs immediately downstream of the valve seat on the walls of the port and also on the surface of the valve body. Strong longitudinal, non-stationary secondary flow structures (i.e. in the plane normal to the main flow direction) are observed in the exhaust manifold. Such structures can degrade the efficiency of a possible turbine of a turbocharger located downstream on the exhaust manifold. The effect of the valve and piston motion has also been studied by the Large Eddy Simulation (LES) approach. Within the exhaust process, the valves open while the piston continues moving in the combustion chamber. This process is often analyzed modeling the piston and valves at fixed locations, but conserving the total mass flow. Using advanced methods, this process can be simulated numerically in a more accurate manner. Based on LES data, the discharge coefficients are calculated following the strict definition. The results show that the discharge coefficient can be overestimated (about 20 %) when using simplified experiments, e. g. flow bench. Simple cases using fixed positions for valve and piston are contrasted with cases which consider the motion of piston and/or valves. The overall flow characteristics are compared within the cases. The comparison shows it is impossible to rebuild the dynamic flow field with the simplification with fixed valves. It is better to employ LES to simulate the dynamic flow and associated losses with valve and piston motion. / <p>QC 20131204</p>

Page generated in 0.2908 seconds