• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 24
  • 24
  • 24
  • 24
  • 24
  • 24
  • 24
  • 20
  • 10
  • Tagged with
  • 301
  • 301
  • 297
  • 67
  • 49
  • 49
  • 49
  • 49
  • 42
  • 42
  • 29
  • 27
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Particle growth in plasmas

Schabel, Michael Joseph, 1973- January 1999 (has links)
Plasmas are used extensively in the manufacturing of microelectronic devices. In typical fabrication facilities, plasmas may be used for etching, deposition, cleaning of a substrate, and chamber cleaning. One of the major challenges to the effective use of plasmas for microelectronics processing is the formation of particles and films from reaction byproducts, which can contaminate both the substrate and the chamber. However, in other communities, the growth of particles and films in plasmas provides opportunities for the production of novel materials, for studies of astrophysical phenomena, and for macroscopic simulations of condensed matter physics. Extensive studies of particles and films in plasmas have resulted in an understanding of particle dynamics including charging, trapping, transport, and deposition. However, comparatively little is understood about the nucleation and growth behavior of particles and films. In this contribution, particle and film formation mechanisms in low-pressure fluorocarbon plasmas are discussed. It is shown that gas phase molecular growth reactions are responsible for the formation of chemical precursor to particle and film nucleation. A fluorocarbon chemical reaction library has been developed, and when used in conjunction with a plasma chemical kinetics model, gives excellent agreement with experimental observations of molecular growth reactions and particle and film formation.
102

Transient axisymmetric model for laser drilling

DeSilva, Sirilath January 2003 (has links)
A transient axisymmetric model is developed to study the laser drilling phenomenon. Governing equations are the transient axisymmetric 3-D heat conduction equation for the solid substrate and for the liquid molten part, the thin layer model (TLM) equations are utilized. Boundary element method (BEM) is used for the region encompassing the moving boundary and finite difference method (FDM) is utilized for the remainder. BEM and FDM are coupled using flux and temperature at their interface. TLM is obtained using simplified free surface, mass, momentum and energy equations in body intrinsic coordinates. They are simplified by integrating across the layer using profiles for velocity and temperature thus obtaining a 1-D transient hyperbolic system. This is solved by a space-time flux conservation method. The TLM is coupled to the BEM-FDM by the common interface matching conditions. The constitutive equations governing laser interaction with material are used at the liquid-vapor interface.
103

A high-order immersed boundary method for unsteady incompressible flow calculations

Linnick, Mark Nicholas January 2003 (has links)
A high-order immersed boundary method (IBM) for the computation of unsteady, incompressible fluid flows on two-dimensional, complex domains is proposed, analyzed, developed and validated. In the IBM, the equations of interest are discretized on a fixed Cartesian grid. As a result, domain boundaries do not always conform to the (rectangular) computational domain boundaries. This gives rise to 'immersed boundaries', i.e., boundaries immersed inside the computational domain. A new IBM is proposed to remedy problems in an older existing IBM that had originally been selected for use in numerical flow control investigations. In particular, the older method suffered from considerably reduced accuracy near the immersed boundary surface where sharp jumps in the solution, i.e., jump discontinuities in the function and/or its derivatives, were smeared out over several grid points. To avoid this behavior, a sharp interface method, originally developed by LeVeque & Li (1994) and Wiegmann & Bube (2000) in the context of elliptic PDEs, is introduced where the numerical scheme takes such discontinuities into consideration in its design. By comparing computed solutions to jump-singular PDEs having known analytical solutions, the new IBM is shown to maintain the formal fourth-order accuracy, in both time and space, of the underlying finite-difference scheme. Further validation of the new IBM code was accomplished through its application to several two-dimensional flows, including flow past a circular cylinder, and T-S waves in a flat plate boundary layer. Comparison of results from the new IBM with results available in the literature found good agreement in all cases.
104

Coaxial jets with swirl

Ben-Yeoshua, Moshe, 1957- January 1993 (has links)
The near field of coaxial air jets, with swirl in the outer one, was investigated experimentally. Axial and azimuthal velocities were mapped using hot-wire anemometry, and static pressure measurements were obtained using a pitot tube. The flow was visualized using a double-pass schlieren system. The flow is sensitive to both the amount of swirl, characterized by the swirl number S, and the mass flow ratio between the outer and inner jets, mr. A necessary condition for recirculation to occur was that S > 0.58 and mr > 8.5. The magnitude of a pressure deficit in the centerline strongly depends on mr, while the existence of swirl appears to have a triggering effect on setting up this pressure gradient. Spectral analysis shows distinct characteristics dependent on the occurrence of recirculation. Because these features were observed upstream of the recirculation region, the vortex breakdown in this experiment may be related to flow instabilities.
105

A study of the failure mechanism of detonations in homogeneous and heterogeneous explosives /

Petel, Oren E. January 2006 (has links)
The present study measured the critical diameter and critical thickness of a variety of explosives. The explosives tested included two "unstable" homogeneous explosives (nitromethane and a nitromethane/nitroethane blend); a model heterogeneous explosive consisting of a packed bed of glass beads (Φ ~ 80 μm) saturated with the homogeneous nitromethane/nitroethane blend; and a commercial heterogeneous explosive, Apex Elite(TM). The comparison of the critical diameter and thickness of an explosive is used to identify the dominant propagation and failure mechanisms of the various explosives. The ratio of critical diameter to critical thickness for nitromethane, the nitromethane/nitroethane blend, the beaded heterogeneous explosive, and Apex Elite(TM) were found to be 3.2 +/- 0.6, 3.6 +/- 0.4, 2.3 +/- 0.1, and 3.5 +/- 1.2 respectively. According to accepted detonation failure theories, the energy losses associated with detonation front curvature are responsible for detonation failure. The curvature model, which is elaborated upon in the present work, leads to a predicted critical diameter to critical thickness ratio of exactly 2. The present study has shown that the only explosive which follows the behaviour predicted by curvature failure models is the beaded heterogeneous explosive, which exhibits fine scale heterogeneities. This seems to indicate that unstable liquid explosives and heterogeneous explosives with large scale heterogeneities do not fail simply due to the wave front curvature, but rather by a local mechanism of failure and reinitiation which dominates the detonation propagation.
106

Structured plasma waveguides and deep EUV generation enabled by intense laser-cluster interactions

Layer, Brian David 04 May 2013 (has links)
<p> Using the unique properties of the interaction between intense, short-pulse lasers and nanometer scale van-der-Waals bonded aggregates (or 'clusters'), modulated waveguides in hydrogen, argon and nitrogen plasmas were produced and extreme ultraviolet (EUV) light was generated in deeply ionized nitrogen plasmas. A jet of clusters behaves as an array of mass-limited, solid-density targets with the average density of a gas. </p><p> Two highly versatile experimental techniques are demonstrated for making preformed plasma waveguides with periodic structure within a laser-ionized cluster jet. The propagation of ultra-intense femtosecond laser pulses with intensities up to 2 x10<sup>17</sup> W/cm<sup>2</sup> has been experimentally demonstrated in waveguides generated using both methods, limited by available laser energy. The first uses a 'ring grating' to impose radial intensity modulations on the channel-generating laser pulse, which leads to axial intensity modulations at the laser focus within the cluster jet target. This creates a waveguide with axial modulations in diameter with a period between 35 &mu;m and 2 mm, determined by the choice of ring grating. The second method creates modulated waveguides by focusing a uniform laser pulse within a jet of clusters with ow that has been modulated by periodically spaced wire obstructions. These wires make sharp, stable voids as short as 50 &mu;m with a period as small as 200 &mu;m within waveguides of hydrogen, nitrogen, and argon plasma. The gaps persist as the plasma expands for the full lifetime of the waveguide. This technique is useful for quasi-phase matching applications where index-modulated guides are superior to diameter modulated guides. Simulations show that these 'slow wave' guiding structures could allow direct laser acceleration of electrons, achieving gradients of 80 MV/cm and 10 MV/cm for laser pulse powers of 1.9 TW and 30 GW, respectively. </p><p> Results are also presented from experiments in which a nitrogen cluster jet from a cryogenically cooled gas valve was irradiated with relativistically intense (up to 2 x 10<sup>18</sup> W/cm<sup>2</sup>) femtosecond laser pulses. The original purpose of these experiments was to create a transient recombination-pumped nitrogen soft x-ray laser on the 2<sub>p3/2</sub> &rarr; 1<sub>s1/2</sub> (&lambda; = 24.779 &Aring;) and 2<sub>p1/2</sub> &rarr; 1<sub> s1/2</sub> (&lambda; = 24.785 &Aring;) transitions in H-like nitrogen (N<sup> 6+</sup>). Although no amplification was observed, trends in EUV emission from H-like, He-like and Li-like nitrogen ions in the 15 &ndash;150 &Aring;spectral range were measured as a function of laser intensity and cluster size. These results were compared with calculations run in a 1-D fluid laser-cluster interaction code to study the time-dependent ionization, recombination, and evolution of nitrogen cluster plasmas. </p>
107

Expansion and electron temperature evolution in an ultracold neutral plasma

Gupta, Priya January 2007 (has links)
This work describes the evolution of an ultracold neutral plasma as it expands freely in vacuum. It presents a comprehensive study of the electron temperature evolution under different initial conditions. Ultracold neutral plasmas are created by photoionizing laser-cooled neutral atoms in ultrahigh vacuum. The ions are typically at a temperature of &sim; 1K while the electron temperature can be set from 1--1000 K. After photoionization, some of the highly energetic electrons escape from the cloud, leaving a net positive charge in the cloud. This creates a Coulomb well which traps the rest of the electrons, and a plasma is formed. Since the electrons have a lot of kinetic energy, they tend to leave the cloud, however, the Coulomb force from the ion pulls the electrons back into the cloud. This exerts a recoil force on the ions, and the whole plasma starts expanding radially outwards. Since the expansion is caused by the thermal pressure of the electrons, a study of the plasma expansion unravels the complicated electron temperature evolution, under different initial conditions. Many collisional processes become significant as a plasma expands. These physical processes tend to heat or cool the ions and electrons, leading to very different kinds of evolution depending on the initial conditions of the plasma. This work demonstrates three different regions of parameter space where the degree of significance of these physical processes is different during the ultracold neutral plasma evolution. The experimental results are verified by theoretical simulations, performed by Thomas Pohl, which untangle the complicated electron temperature evolution.
108

A stochastic model for calculating collisional ionization rates in dense plasmas

Murillo, Michael Sean January 1993 (has links)
A formalism has been developed here in which the collisional ionization rate is determined directly, as a probability of transition due to changes in the plasma's local electric field. The calculations described here are performed within a model which treats hydrogenic ions only, but the generalization to more complex ions is straightforward. The initial state is a hydrogenic state with a reduced ionization potential, and the final state is that of a free particle. This model is effective in treating many scenerios that occur in laser fusion and sub-picosecond laser-matter experiments where high-density conditions exist. The results show that plasma screening of the interaction between target and free electrons serves to reduce the ionization rate while the drop in ionization potential serves to increase the ionization rate. The lowering of the continuum dominates in all calculations performed here and indicates that the enhancement in ionization rate can be as much as an order of magnitude in physically interesting regimes. (Abstract shortened by UMI.)
109

Two-dimensional asymptotic equilibrium representations of three-dimensional magnetospheric models

Moore, Brian David January 1992 (has links)
The Harris (1962) model, which is consistent with local thermodynamic equilibrium (LTE) does not represent the earth's magnetotail, which has a magnetic field component normal to the equatorial plane. However, inclusion of a normal magnetic $B\sb{z}$ component can be made without violating the slow-flow MHD approximation, under the condition ${B\sb{z}\over B\sb{x}}\ll 1$. A procedure is developed for constructing a family of two-dimensional asymptotic equilibrium solutions that are ordered with respect to the magnetic disturbance index $K\sb{p}$ and based on fitting to a three-dimensional magnetospheric model magnetotail. The low quality of fits for magnetically active configurations is indicative of their consistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere are ruled by different thermodynamic conditions than those associated with LTE.
110

Plasma-induced self-phase and cross-phase modulation of femtosecond laser pulses

Le Blanc, Stephen Paul January 1994 (has links)
The spectral, temporal, and spatial characteristics of plasma-induced self-phase and cross-phase modulation in rare gases have been investigated using a femtosecond KrF excimer laser focused to peak intensities of 10$\sp{14}$-10$\sp{15}$ W cm$\sp{-2}.$ The quiver energy of a free electron under these conditions is less than the ionization potential of all rare gases, ensuring that ionization occurs only by optical field-induced processes. Spectral blueshifts of up to 2 nm have been observed, and the blueshifted spectra show an oscillatory structure. The blueshifted spectra are shown to be the result of plasma-induced self-phase modulation and can be modeled by assuming tunneling ionization and one dimensional pulse propagation. The newly discovered oscillatory structure in the spectra is related to that observed in earlier experiments on self-phase modulation in optical fibers. To investigate the temporal behavior of the field ionization process, pump-probe experiments have been performed with a 100 fs probe pulse at 497 nm and a 400 fs pump pulse at 248 nm. Under conditions of weak ionization (Z $\ll$ 1), pump-probe experiments and theoretical calculations show that the ionization rate of the field ionized gas is maximum at the peak of the laser pulse and that the degree of ionization changes over a time equal to about half of the pump pulse width. By observing changes in the transmission of the probe pulse caused by plasma absorption, the electron temperature of a field ionized rare gas is determined to be on the order of 1 eV. The time varying electron density in the pump-probe experiments also causes plasma-induced cross-phase modulation, or spectral blueshifting of the probe pulse spectrum of up to 15 nm. The pump-probe experiments show that plasma defocusing causes the spectral blueshifting to be spatially dependent. Experimental results and a two dimensional pulse propagation model indicate that the most defocused beam components also show the maximum spectral blueshift. Plasma-induced cross-phase modulation has also been used to characterize the amplitude and phase of a 1 ps chirped pulse at 497 nm and the pulse width of a 400 fs pulse at 147 nm generated by four wave frequency mixing in xenon.

Page generated in 0.0585 seconds