• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How do metamorphic fluids move through rocks? : An investigation of timescales, infiltration mechanisms and mineralogical controls

Kleine, Barbara I. January 2015 (has links)
This thesis aims to provide a better understanding of the role of mountain building in the carbon cycle. The amount of CO2 released into the atmosphere due to metamorphic processes is largely unknown. To constrain the quantity of CO2 released, fluid-driven reactions in metamorphic rocks can be studied by tracking fluid-rock interactions along ancient fluid flow pathways. The thesis is divided into two parts: 1) modeling of fluid flow rates and durations within shear zones and fractures during greenschist- and blueschist-facies metamorphism and 2) the assessment of possible mechanisms of fluid infiltration into rocks during greenschist- to epidote-amphibolite-facies metamorphism and controlling chemical and mineralogical factors of reaction front propagation. On the island Syros, Greece, fluid-rock interaction was examined along a shear zone and within brittle fractures to calculate fluid flux rates, flow velocities and durations. Petrological, geochemical and thermodynamic evidence show that the flux of CO2-bearing fluids along the shear zone was 100-2000 times larger than the fluid flux in the surrounding rocks. The time-averaged fluid flow velocity and flow duration along brittle fractures was calculated by using a governing equation for one-dimensional transport (advection and diffusion) and field-based parameterization. This study shows that fluid flow along fractures on Syros was rapid and short lived. Mechanisms and controlling factors of fluid infiltration were studied in greenschist- to epidote-amphibolite-facies metabasalts in SW Scotland. Fluid infiltration into metabasaltic sills was unassisted by deformation and occurred along grain boundaries of hydrous minerals (e.g. amphibole) while other minerals (e.g. quartz) prevent fluid infiltration. Petrological, mineralogical and chemical studies of the sills show that the availability of reactant minerals and mechanical factors, e.g. volume change in epidote, are primary controls of reaction front propagation. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.</p><p> </p>
2

Modeling Fluid Flow Effects on Shallow Pore Water Chemistry and Methane Hydrate Distribution in Heterogeneous Marine Sediment

Chatterjee, Sayantan 06 September 2012 (has links)
The depth of the sulfate-methane transition (SMT) above gas hydrate systems is a direct proxy to interpret upward methane flux and hydrate saturation. However, two competing reaction pathways can potentially form the SMT. Moreover, the pore water profiles across the SMT in shallow sediment show broad variability leading to different interpretations for how carbon, including CH4, cycles within gas-charged sediment sequences over time. The amount and distribution of marine gas hydrate impacts the chemistry of several other dissolved pore water species such as the dissolved inorganic carbon (DIC). A one-dimensional (1-D) numerical model is developed to account for downhole changes in pore water constituents, and transient and steady-state profiles are generated for three distinct hydrate settings. The model explains how an upward flux of CH4 consumes most SO42- at a shallow SMT implying that anaerobic oxidation of methane (AOM) is the dominant SO42- reduction pathway, and how a large flux of 13C-enriched DIC enters the SMT from depth impacting chemical changes across the SMT. Crucially, neither the concentration nor the d13C of DIC can be used to interpret the chemical reaction causing the SMT. The overall thesis objective is to develop generalized models building on this 1-D framework to understand the primary controls on gas hydrate occurrence. Existing 1-D models can provide first-order insights on hydrate occurrence, but do not capture the complexity and heterogeneity observed in natural gas hydrate systems. In this study, a two-dimensional (2-D) model is developed to simulate multiphase flow through porous media to account for heterogeneous lithologic structures (e.g., fractures, sand layers) and to show how focused fluid flow within these structures governs local hydrate accumulation. These simulations emphasize the importance of local, vertical, fluid flux on local hydrate accumulation and distribution. Through analysis of the fluid fluxes in 2-D systems, it is shown that a local Peclet number characterizes the local hydrate and free gas saturations, just as the Peclet number characterizes hydrate saturations in 1-D, homogeneous systems. Effects of salinity on phase equilibrium and co-existence of hydrate and gas phases can also be investigated using these models. Finally, infinite slope stability analysis assesses the model to identify for potential subsea slope failure and associated risks due to hydrate formation and free gas accumulation. These generalized models can be adapted to specific field examples to evaluate the amount and distribution of hydrate and free gas and to identify conditions favorable for economic gas production.
3

Sr behaviour during hydrothermal alteration of oceanic gabbros exposed at Hess Deep : implications for 87SR/86SR compositions as a proxy for fluid-rock interaction.

Kirchner, Timo 26 May 2011 (has links)
Mid-ocean ridge hydrothermal systems are known to extend to deep levels of the oceanic crust, including the plutonic section, but little is known about the timing and nature of fluid-rock interactions at these levels. To investigate the temporal and spatial characteristics of hydrothermal alteration in the lower crust, this study investigates a suite of hydrothermally altered (<5 to >20% hydrous alteration) gabbroic rocks recovered from the Hess Deep Rift, where 1.2 Ma fast-spreading East Pacific Rise crust is well-exposed. These samples were altered to amphibole-dominated assemblages with chlorite-rich samples occurring in a restricted region of the field area. Hornfels, indicative of reheated, previously altered rocks, are clustered in the central part of the field area. The entire sample suite has elevated 87Sr/86Sr (mean: 0.70257±0.00007 (2σ), n=16) with respect to fresh rock (0.7024). Bulk rock 87Sr/86Sr is strongly correlated with percentage of hydrous alteration and weakly correlated with bulk rock Sr content. The distribution of Sr in igneous and metamorphic minerals suggests that greenshist-facies alteration assemblages (chlorite, actinolitic amphibole, albitic plagioclase) lose Sr to the fluid while amphibolite-facies secondary assemblages (secondary hornblende, anorthitic plagioclase) take up Sr. The temperature-dependent mobilization of Sr in hydrothermal systems has implications for the 87Sr/86Sr and ultimately fluid/rock ratio calculations based on the assessed 87Sr/86Sr systematics. Considering Sr behaviour, minimum fluid/rock ratios of ~1 were calculated for the plutonic section. Due to the large uncertainty regarding fluid Sr composition at depth and the sensitivity of fluid/rock ratio calculations on this parameter, a model combining the sheeted dike complex and the plutonic section to one hydrothermal system is introduced, yielding a fluid/rock ratio of 0.5. This value may be more realistic since the fluid composition entering and exiting the sheeted dike complex is better constrained. The regional distribution of hornfelsed material with elevated 87Sr/86Sr suggests that fluid ingress into the upper plutonics at Hess Deep occurred on-axis in a dynamic interface of a vertically migrating axial magma chamber (AMC) and the base of the hydrothermal system. / Graduate

Page generated in 0.0397 seconds