• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4881
  • 1141
  • 842
  • 676
  • 159
  • 139
  • 118
  • 118
  • 118
  • 118
  • 118
  • 117
  • 105
  • 72
  • 45
  • Tagged with
  • 10981
  • 4670
  • 2419
  • 1970
  • 1820
  • 1740
  • 948
  • 773
  • 759
  • 717
  • 705
  • 660
  • 608
  • 607
  • 598
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The Gas-Absorption/Chemical-Reaction Method for Measuring Air-Water Interfacial Area in Natural Porous Media

Lyu, Ying, Brusseau, Mark L., El Ouni, Asma, Araujo, Juliana B., Su, Xiaosi 11 1900 (has links)
The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (A(ia)). Coefficients of variation for A(ia) were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (A(m)) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the A(m) for the glass beads is 29 (1) cm(-1), compared to 32 (3), 30 (2), and 31 (2) cm(-1) determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, A(ia)s of 47 and 44 cm(-1) were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.
132

Some unsteady problems in fluid dynamics

Czaykowski, Jerzy T. January 1970 (has links)
No description available.
133

Cytologic Diagnosis of Ki-1 Lymphoma in Pleural and Peritoneal Effusions: A Case Report

Burja, Izabela T., Thompson, Sophie K., Brown, Earl J. 12 August 1997 (has links)
This is a report of a case of Ki-1-positive large-cell anaplastic lymphoma in an 87-year-old man diagnosed on pleural and peritoneal fluids by cytomophologic and immunohistochemical examination. Papanicolaou-stained smears revealed many single, large neoplastic cells containing one or two nuclei with occasional multinucleated cells having a wreath-like nuclear arrangement. The tumor cells expressed Ki-1 antigen and epithelial membrane antigen. This is the first known report of Ki-1 lymphoma diagnosed initially on cytologic examination of pleural and peritoneal fluids.
134

Some aspects of downwards two-phase slug flow in pipes

Sourour, Sami January 1970 (has links)
No description available.
135

Stability of a flexible cylinder in axisymmetrically confined flow

Sim, Woo-Gun January 1987 (has links)
No description available.
136

Study of Fluid Flow and Cavitation Inside Torque Converters

Chuang, Di 01 1900 (has links)
Cavitation inside an automotive torque converter running at various pump speeds was simulated by using the Computational Fluid Dynamics (CFD) commercial package ANSYS-CFX 10.0/11.0. The numerical solution obtained for the case with no cavitation was used as an initial condition for the case of flow with cavitation to accelerate convergence. The converter was initially modeled using several grid sizes to evaluate the effect of grid density on the numerical solution and to select the optimum grid size for subsequent simulations. Comparison of CFD to actual test results demonstrates that the cavitation model built in the commercial code, which was developed by Zwart et. al. (2004) based on the simplified Rayleigh-Plesset equation of bubble dynamics, does not capture the full effect of cavitation inside the converter. Modifications to this model have been investigated in this study. The effect of the variation of the automotive transmission oil vapor pressure due to the rise in temperature during normal operating conditions was also investigated and found not to cause any significant change to the area of vapor formation, and hence did not have a significant effect on the converter performance. Values of the empirical coefficients of the cavitation model had to be modified in order for the model to capture the full effect of cavitation on the performance of the converter operating at high pump speeds. Results showed a much larger area of vapor over the converter stator and traces of vapor appeared inside the pump, and turbine blades. With these modifications, the model produced results in better agreement with the available experimental data. Moreover, simulations have been carried out in both steady and transient states using various turbulence models available in CFX10.0/11.0 in order to evaluate the effect of the choice of turbulence models on cavitation prediction. / Thesis / Master of Applied Science (MASc)
137

Computational and Experimental Investigation of Supersonic Convection over a Laser Heated Target

Marineau, Eric Christian 08 June 2007 (has links)
This research concerns the development and validation of simulation of the beam-target interaction to determine the target temperature distribution as a function of time for a given target geometry, surface radiation intensity and free stream flow condition. The effect of a turbulent supersonic flow was investigated both numerically and experimentally. Experiments were in the Virginia Tech supersonic wind tunnel with a Mach 4 nozzle, ambient total temperature, total pressure of 160 psi and Reynolds number of 5 × 10⁷/<i>m</i> . The target consisted of a 6.35 mm stainless steel plate painted flat black. The target was irradiated with a 300 Watt continuous beam Ytterbium fiber laser generating a 4 mm Gaussian beam at 1.08 micron 10 cm from the leading edge where a 4 mm turbulent boundary layer prevailed. An absorbed laser power of 65, 81, 101, 120 Watts was used leading to a maximum heat flux between 1035 to 1910 <i>W/cm</i>². The target surface and backside temperature was measured using a mid-wave infrared camera. The backside temperature was also measured using eight type-K thermocouples. Two tests are made, one with the flow-on and the other with the flow-off. For the flow-on case, the laser is turned on after the tunnel starts and the flow reaches a steady state. For the flow-off case, the plate is heated at the same power but without the supersonic flow. The cooling effect is seen by subtracting the flow-off temperature from the flow-on temperature. This temperature subtraction is useful in cancelling the bias errors such that the overall uncertainty is significantly reduced. A new conjugate heat transfer algorithm was implemented in the GASP solver and validated by predicting the temperature distribution inside a cooled nozzle wall. The conjugate heat transfer algorithm was used to simulate the experiments at 81 and 65 Watts. Most computations were performed using the Spalart-Allmaras turbulence model on a 280, 320 cell grid. A grid convergence study was performed. At 65 Watts, good agreement was found in the predicted surface and backside temperature. On the surface, cooling was underpredicted close to the center and better agreement was seen away form the center. On the backside, good agreement was found for the temperature and temperature difference. Compared to the 65 Watt case, the 81 Watt case displays more asymmetry and a region of increased cooling is found upstream. The increased asymmetry was also seen on the backside by both the thermocouple and infrared temperature measurements. The computation underpredicts the surface temperature by 7% for the flow-off case. Again, cooling is underpredicted at the surface near the center. For all power settings, convective cooling significantly increases the time required to reach a given temperature. / Ph. D.
138

Bubbles in a gas fluidised bed

Mojtahedi, Wahab January 1983 (has links)
No description available.
139

Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

Dean, Matthew, Findlay, Geoffrey, Hoopmann, Michael, Wu, Christine, MacCoss, Michael, Swanson, Willie, Nachman, Michael January 2011 (has links)
BACKGROUND:Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (Mus domesticus), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with 15N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins.RESULTS:We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract.CONCLUSION:Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract.
140

The influence of near bed turbulent flow structures on scour hole development at pipe culvert outlets

Liriano, Sarah Louise January 1999 (has links)
This thesis presents the results of experimental measurements of scouring and turbulent velocity measurements in and around scour holes downstream of pipe culvert outlets. Centreline scour hole profiles have been measured at 4 flow rates and 4 tailwater depths resulting in up to 16 different experimental conditions. These results have enabled the maximum scour depth downstream of culvert outlets to be quantified in terms of flow rate and tailwater depth. An equation in terms of densimetric Froude number is presented to predict scour depth incorporating constants dependent on tailwater depth calculated from additional equations. The prediction of scour depth for different tailwater depths is of immediate benefit to design engineers. Additionally, measurementosf scourh ole profiles haveb een madeu sing four experimental facilities of different sizes. Froudian scaling protocols have been used to investigate the effect of model scale on scour hole development. Three experimental model facilities have been used at the University of Hertfordshire and a fourth prototype scale facility used at HR Wallingford. Model scale has been found to have an effect with small-scale models failing to accurately predict maximum scour depth. This is of particular significance as previous equations predicting scour depth downstream of outlets have been derived from studiesu sing small-scalem odel facilities. Velocity data was collected for three tailwater depths at one flow rate using a downward facing 3 component Acoustic Doppler Velocimeter. A method of bed fixing was used to enable velocity measurements to be made in scour holes at different stages of development without changes in bed form during the velocity data collection. From this data mean velocity vectors and contours have been plotted at different stages of scour hole development and turbulence intensities and Reynolds stresses have been determined for the centreline profiles. Further, using the quadrant analysis technique, the near-bed bursting events have been examined at different stages of development, which has shown that different events occur at different locations in the scour hole. The analysis of the turbulent flow structure in the scour hole has revealed that initial scour is a result of high velocities exceeding the critical velocity for sediment transport. As the scour hole develops the velocities close to the bed reduce and a gradual increase in scour depth takes place as a result of quadrant 4 events (sweeps) impacting on the bed in this region. Upstream of the dune the jet comes into contact with the bed and flow structures similar to those observed downstream of backward facing steps or dunes in open channel flow are noted. In particular it is suggested that hairpin vortices may be present in this region and lead to further scouring. The identification of flow structures in the scour hole may lead to the development of computer simulations of scouring downstream of pipe culvert outlets which in the long term could be used as a design tool.

Page generated in 0.0509 seconds