• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamics of geologic fluids

Steele-MacInnis, Matthew 07 May 2013 (has links)
Fluids play a vital role in essentially all geologic environments and processes, and are the principal media of heat and mass transfer in the Earth. The properties of geologic fluids can be diverse, as fluids occur at conditions ranging from ambient temperatures and pressures at Earth's surface, to extreme temperatures and pressures in Earth's deep interior. Regardless the wide ranges of conditions at which geologic fluids occur, fluid properties are described and governed by the same fundamental thermodynamic relationships. Thus, application of thermodynamic principles and methods allows us to decipher the properties and roles of geologic fluids, to help understand geologic processes. Fluid inclusions in minerals provide one of the best available tools to study the compositions of geological fluids. Compositions of fluid inclusions can be determined from microthermometric measurements, based on the vapor-saturated liquidus conditions of model chemical systems, or by various microanalytical techniques. The vaporsaturated liquidus relations of the system H2O-NaCl-CaCl2 have been modeled to allow estimation of fluid inclusion compositions by either microthermometric or microanalytical methods. Carbon capture and storage (CCS) in deep saline formations represents one option for reducing anthropogenic CO2 emissions into Earth's atmosphere. Availability of storage volume in deep saline formations is a significant component of injection and storage planning. Investigation of the volumetric properties of CO2, brine and CO2-saturated brine reveals that storage volume requirements are minimized when CO2 dissolves into brine. These results suggest that a protocol involving brine extraction, CO2 dissolution and re-injection may optimize CCS in deep saline formations. Numerical modeling of quartz dissolution and precipitation in a sub-seafloor hydrothermal system was used to understand the role of fluid-phase immiscibility ("boiling") on quartz-fluid interactions, and to predict where in the system quartz could deposit and trap fluid inclusions. The spatial distribution of zones of quartz dissolution and precipitation is complex, owing to the many inter-related factors controlling quartz solubility. Immiscibility exerts a strong control over the occurrence of quartz precipitation in the deeper regions of fluid circulation. / Ph. D.

Page generated in 0.1293 seconds