• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 77
  • 67
  • 16
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 481
  • 481
  • 431
  • 117
  • 108
  • 106
  • 96
  • 95
  • 79
  • 71
  • 69
  • 69
  • 62
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Numerical study of fluid elastic vibration of a circular cylinder in shear flow

Lin, Hung-Chih 08 September 2005 (has links)
The present study aims to explore dynamical behavior of the fluid-elastic instability of a circular cylinder in shear flow by numerical simulations. The theoretical model comprises two groups of transient conservation equations of mass and momentum and the governing equations are solved numerically with an iterative SIMPLEC(Semi-Implicit Method for Pressure-Linked Equations Consistent) algorithm to determine the flow property and to analysis structure stress simultaneously. Additionally, the TFI (Transfinite interpolation) computation procedure is applied to characterize the behavior of fluid-structure interaction. The predictions are in reasonable agreement with literature showing the validity of the present theoretical model. The numerical results indicate that there is a transverse force acting from high velocity side toward the low velocity side in shear flow. The magnitude of this transverse force increases with the shear parameter. The Strouhal number slightly increases as the shear parameter increases for all Reynolds number. As the pattern of the approach flow changes from the uniform to shear flow, the front stagnation point shifts to high velocity side, and the base pressure increase. The magnitude of the shift of front stagnation point is linear with the shear parameter. Furthermore, this study appraises the amplitude and orbit of fluid elastic vibration of a circular cylinder in shear flow, and shows the effects of the spring constant and damping factor on fluid elastic vibration of the cylinder. In addition, various effects including shear parameter and mass ratio on the critical velocity of the fluid elastic vibration also has been examined detail.
102

Investigation Of Fluid Structure Interaction In Cardiovascular System From Diagnostic And Pathological Perspective

Salman, Huseyin Enes 01 June 2012 (has links) (PDF)
Atherosclerosis is a disease of the cardiovascular system where a stenosis may develop in an artery which is an abnormal narrowing in the blood vessel that adversely affects the blood flow. Due to the constriction of the blood vessel, the flow is disturbed, forming a jet and recirculation downstream of the stenosis. Dynamic pressure fluctuations on the inner wall of the blood vessel leads to the vibration of the vessel structure and acoustic energy is propagated through the surrounding tissue that can be detected on the skin surface. Acoustic energy radiating from the interaction of blood flow and stenotic blood vessel carries valuable information from a diagnostic perspective. In this study, a constricted blood flow is modeled by using ADINA finite element analysis software together with the blood vessel in the form of a thin cylindrical shell with an idealized blunt constriction. The flow is considered as incompressible and Newtonian. Water properties at indoor temperature are used for the fluid model. The diameter of the modeled vessel is 6.4 mm with 87% area reduction at the throat of the stenosis. The flow is investigated for Reynolds numbers 1000 and 2000. The problem is handled in three parts which are rigid wall Computational Fluid Dynamics (CFD) solution, structural analysis of fluid filled cylindrical shell, and Fluid Structure Interaction (FSI) solutions of fluid flow and vessel structure. The pressure fluctuations and consequential vessel wall vibrations display broadband spectral content over a range of several hundred Hz with strong fluid-structural coupling. Maximum dynamic pressure and vibration amplitudes are observed around the reattachment point of the flow near the exit of the stenosis and this effect gradually decreases along downstream of flow. Results obtained by the numerical simulations are compared with relevant studies in the literature and it is concluded that ADINA can be used to investigate these types of problems involving high frequency pressure fluctuations of the fluid and the resulting vibratory motion of the surrounding blood vessel structure.
103

流体・構造連成問題における形状最適化

浜崎, 純也, Hamasaki, Junya, 畔上, 秀幸, AZEGAMI, Hideyuki 09 1900 (has links)
No description available.
104

Fluid-structure interactions in microstructures

Das, Shankhadeep 17 October 2013 (has links)
Radio-frequency microelectromechanical systems (RF MEMS) are widely used for contact actuators and capacitive switches. These devices typically consist of a metallic membrane which is activated by a time-periodic electrostatic force and makes periodic contact with a contact pad. The increase in switch capacitance at contact causes the RF signal to be deflected and the switch thus closes. Membrane motion is damped by the surrounding gas, typically air or nitrogen. As the switch opens and closes, the flow transitions between the continuum and rarefied regimes. Furthermore, creep is a critical physical mechanism responsible for the failure in these devices, especially those operating at high RF power. Simultaneous and accurate modeling of all these different physics is required to understand the dynamical membrane response in these devices and to estimate device lifetime and to improve MEMS reliability. It is advantageous to model fluid and structural mechanics and electrostatics within a single comprehensive numerical framework to facilitate coupling between them. In this work, we develop a single unified finite volume method based numerical framework to study this multi-physics problem in RF MEMS. Our objective required us to develop structural solvers, fluid flow solvers, and electrostatic solvers using the finite volume method, and efficient mechanisms to couple these different solvers. A particular focus is the development of flow solvers which work efficiently across continuum and rarefied regimes. A number of novel contributions have been made in this process. Structural solvers based on a fully implicit finite volume method have been developed for the first time. Furthermore, strongly implicit fluid flow solvers have also been developed that are valid for both continuum and rarefied flow regimes and which show an order of magnitude speed-up over conventional algorithms on serial platforms. On parallel platforms, the solution techniques developed in this thesis are shown to be significantly more scalable than existing algorithms. The numerical methods developed are used to compute the static and dynamic response of MEMS. Our results indicate that our numerical framework can become a computationally efficient tool to model the dynamics of RF MEMS switches under electrostatic actuation and gas damping. / text
105

A new incompressible Navier-Stokes method with general hybrid meshes and its application to flow/structure interactions

Ahn, Hyung Taek 28 August 2008 (has links)
Not available / text
106

Isogeometric analysis of turbulence and fluid-structure interaction

Bazilevs, Jurijs 28 August 2008 (has links)
Not available / text
107

Study of Fluid-structure Interactions of Communication Antennas

Boado Amador, Maby 05 December 2011 (has links)
Large structures exposed to the environment such as the collinear omni and large panel communication antennas in this research suffer damage from cyclic wind, rain, hail, ice load and impacts from birds and stones. Stresses from self-weight, ice loading and wind gusts will produce deformations of the structure that will lead to performance deterioration of the antenna. In order to avoid such a case, it is important to understand the static, dynamic and aerodynamic behavior of these structures and thus optimization can be achieved. In this research the current fluid-structure interaction methods are used to model, simulate and analyze these communication antennas in order to assess whether failure would occur under service loads. The FEA models developed are verified against analytical models and/or experiments. Different antenna configurations are compared based on their capacity to minimize vibration effects, stress-induced deformations and aerodynamic loading effects.
108

Numerical Modeling of Large-Displacement Fluid-Structure Interaction: Preliminary Study Aimed at Analysis of Heart Valve Dynamics

Williston, Kyle Alexander 17 August 2012 (has links)
The demand for artificial heart valve replacements is increasing as a result of birth defects, ageing and disease. Collaboration between engineers, biologists and mathematicians is necessary to handle problems related to biocompatibility and fluid dynamics. As a result of the increased demand for artificial heart valves, many new designs have been developed recently. A method to test those designs is to use mathematical modeling. This method has a relatively low-cost and can be used as a preliminary tool before expensive prototypes are created. This research analyzes the use of the numerical modeling software LS-DYNA for large-displacement fluid-structure interaction. It is a preliminary study aimed at the analysis of heart valve dynamics. In particular, a channel with flap model is created in LS-DYNA. The model's physics, convergence and ability to handle large deformations is investigated.
109

The Development and Evaluation of a Fully-coupled Monolithic Approach to Aero-structural Analysis and Optimization

McCormick, Neil 05 December 2013 (has links)
A monolithic approach to aero-structural analysis and optimization has been developed and implemented. In contrast to a partitioned approach which uses individual fluid and structural solvers to solve their respective systems separately, the monolithic approach solves a fully-coupled system simultaneously, enforcing solution compatibility across the sub-system interfaces at each iteration. In this work, a three-field formulation is used, consisting of fluid, structural, and fluid mesh-movement sub-systems. The performance of the monolithic approach is characterized using 1-D unsteady and 2-D steady analysis problems, and compared with a partitioned approach. Four steady model aero-structural optimization problems are also investigated. Gradients of the objective function are computed using the discrete-adjoint and flow-sensitivity (direct) methods. In each case, the monolithic approach is shown to be a promising option for efficient aero-structural analysis and optimization, though the implementation requires additional development of coupling sub-matrices when compared to a partitioned approach.
110

Wall shear patterns of a 50% asymmetric stenosis model using photochromic molecular flow visualization

Chin, David, 1982- January 2008 (has links)
Photochromic Molecular Flow Visualization is an in vitro, experimental technique that uses high speed image acquisition combined with an ultraviolet laser to capture instantaneous flow profiles. It is particularly adept at measuring near wall velocities which are necessary for accurate wall shear rate measurements. This thesis describes the implementation and validation of the technique at McGill. The system was used to investigate the wall shear rate patterns in an idealized 50% asymmetric stenosis model under steady flow for Reynolds numbers 206, 99 and 50. A large recirculation zone with flow reattachment was seen downstream of the stenosis with maximum shear values occurring slightly upstream of peak stenosis for Reynolds number 206. This information is vital to ongoing dynamic cell culture experiments aimed at understanding the progression of atherosclerosis.

Page generated in 0.0588 seconds