• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluorescence anisotropy near-field scanning optical microscopy (FANSOM) : a new technique for biological microviscometry /

Reitz, Frederick B. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 89-94).
2

Homo-FRET Imaging of CEACAM1 in Living Cells using Total Internal Reflection Fluorescence Polarization Microscopy

Lo, Jocelyn 20 November 2012 (has links)
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes homotypic and heterotypic cis- and trans- interactions that regulate processes including metabolism, immune response, and tumorigenesis. To better understand and eventually control CEACAM1’s numerous roles, we characterized the localization, homotypic cis-oligomerization, and regulation of CEACAM1 at the molecular scale using steady-state TIRFPM homo-FRET imaging in living cells. We established the anisotropy sensitivity of our TIRFPM platform using Venus monomers and dimers, which had significantly different anisotropy values. Heterogeneously distributed across the plasma membrane, CEACAM1-4L-EYFP was a mixture of monomers and oligomers, with a slightly more monomeric population at the high intensity regions. In addition, perturbation with ionomycin or α-CEA pAb increased CEACAM1 monomers, potentially in a localized manner. Although limited in detecting any anisotropy differences between CEACAM1-4L-EYFP and monomeric G432,436L-CEACAM1-4L-EYFP populations, TIRFPM homo-FRET imaging can be a useful tool for studying membrane protein self-association with proper controls and studies that focus on relative anisotropy changes.
3

Homo-FRET Imaging of CEACAM1 in Living Cells using Total Internal Reflection Fluorescence Polarization Microscopy

Lo, Jocelyn 20 November 2012 (has links)
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes homotypic and heterotypic cis- and trans- interactions that regulate processes including metabolism, immune response, and tumorigenesis. To better understand and eventually control CEACAM1’s numerous roles, we characterized the localization, homotypic cis-oligomerization, and regulation of CEACAM1 at the molecular scale using steady-state TIRFPM homo-FRET imaging in living cells. We established the anisotropy sensitivity of our TIRFPM platform using Venus monomers and dimers, which had significantly different anisotropy values. Heterogeneously distributed across the plasma membrane, CEACAM1-4L-EYFP was a mixture of monomers and oligomers, with a slightly more monomeric population at the high intensity regions. In addition, perturbation with ionomycin or α-CEA pAb increased CEACAM1 monomers, potentially in a localized manner. Although limited in detecting any anisotropy differences between CEACAM1-4L-EYFP and monomeric G432,436L-CEACAM1-4L-EYFP populations, TIRFPM homo-FRET imaging can be a useful tool for studying membrane protein self-association with proper controls and studies that focus on relative anisotropy changes.
4

Combinatorial Microscopy of Molecular Interactions at Membrane Interfaces

Oreopoulos, John 13 June 2011 (has links)
Biological membranes are heterogeneous two-dimensional fluids composed of lipids, sterols and proteins that act as complex gateways and define the cell boundary. The functions of these interfaces are diverse and specific to individual organisms, cell types, and tissues. Membranes must take up nutrients and small molecules, release waste products, bind ligands, transmit signals, convert energy, sense the environment, maintain cell adhesion, control cell migration, and much more while forming a tight barrier around the cell. The molecular mechanisms and structural details responsible for this diverse set of functions of biological membranes are still poorly understood, however. Developing new tools capable of probing and determining the local molecular organization, structure, and dynamics of membranes and their components is critical for furthering our knowledge about these important cellular processes that are often linked to health and diseases. Combinatorial microscopy takes advantage of the rich properties of light (intensity, wavelength, polarization, etc.) to create new forms of imaging that quantify the motions, orientations, and binding kinetics of the sample’s biomolecular constituents. These new optical imaging modalities can also be further combined with other types of microscopy to produce spatially correlated micrographs that provide complementary pieces of information about the sample under investigation that would otherwise remain hidden from the observer if the two imaging techniques were applied independently. The first part of this thesis provides a detailed account of the construction of a specialized hybrid microscopy platform that combines polarized total internal reflection fluorescence microscopy (pTIRFM) with atomic force microscopy (AFM) for the purpose of studying fundamental sterol-lipid and antimicrobial peptide-lipid interactions in model membranes. The second half describes a combined pTIRFM and Förster resonance energy transfer (FRET) imaging method to elucidate the oligomeric state and spatial distribution of carcinoembryonic-antigen-related cell-adhesion molecules (CEACAMs) in the membranes of living cells.
5

Combinatorial Microscopy of Molecular Interactions at Membrane Interfaces

Oreopoulos, John 13 June 2011 (has links)
Biological membranes are heterogeneous two-dimensional fluids composed of lipids, sterols and proteins that act as complex gateways and define the cell boundary. The functions of these interfaces are diverse and specific to individual organisms, cell types, and tissues. Membranes must take up nutrients and small molecules, release waste products, bind ligands, transmit signals, convert energy, sense the environment, maintain cell adhesion, control cell migration, and much more while forming a tight barrier around the cell. The molecular mechanisms and structural details responsible for this diverse set of functions of biological membranes are still poorly understood, however. Developing new tools capable of probing and determining the local molecular organization, structure, and dynamics of membranes and their components is critical for furthering our knowledge about these important cellular processes that are often linked to health and diseases. Combinatorial microscopy takes advantage of the rich properties of light (intensity, wavelength, polarization, etc.) to create new forms of imaging that quantify the motions, orientations, and binding kinetics of the sample’s biomolecular constituents. These new optical imaging modalities can also be further combined with other types of microscopy to produce spatially correlated micrographs that provide complementary pieces of information about the sample under investigation that would otherwise remain hidden from the observer if the two imaging techniques were applied independently. The first part of this thesis provides a detailed account of the construction of a specialized hybrid microscopy platform that combines polarized total internal reflection fluorescence microscopy (pTIRFM) with atomic force microscopy (AFM) for the purpose of studying fundamental sterol-lipid and antimicrobial peptide-lipid interactions in model membranes. The second half describes a combined pTIRFM and Förster resonance energy transfer (FRET) imaging method to elucidate the oligomeric state and spatial distribution of carcinoembryonic-antigen-related cell-adhesion molecules (CEACAMs) in the membranes of living cells.

Page generated in 0.109 seconds