Spelling suggestions: "subject:"fluxional""
1 |
SYNTHESIS, PROPERTIES, STRUCTURAL CHARACTERIZATION, AND REACTIVITY OF LOW-VALENT TITANIUM (BISDIIMINE) COMPLEXESMaynor, Marc Steven 01 January 2004 (has links)
The synthesis, structure, and reactivity of titanium bis(diimine) complexes supported by 1,2-alternate dimethylsilyl-bridged p-tert-butylcalix[4]arene dianion and 2,2' methylene-bridged 4-methyl, 6-tertbutyl phenol ligands is reported. The molecular structure of [(DMSC)Ti(bpy)2] (28) and [(MBMP)Ti(bpy)2] (55) was characterized by X-ray crystallography. Complexes [(DMSC)Ti(bpy)2] (28), [(DMSC)Ti(dmbpy)2] (29), and [(DMSC)Ti(phen)2] (30) undergoes light-assisted reactions with two or more equivalents of (C6H5)2CO or (p-MeC6H4)2CO to give the corresponding 1-aza-5-oxa-titanacyclopentene complexes 37-42. Similar reactivity was observed with [(MBMP)Ti(bpy)2] (55), [(MBMP)Ti(dmbpy)2] (56), and [(MBMP)Ti(phen)2] (57). The molecular structure of [(MBMP)Ti{kappa-3-OC(C6H5)2C10H7N2}{OCH(C6H5)2}] (58) was characterized by 1H and 13C NMR as well as X-Ray crystallography.
|
2 |
Monte Carlo Methods for the Study of the Ro-Vibrational States of Highly Fluxional MoleculesPetit, Andrew S. 24 July 2013 (has links)
No description available.
|
3 |
Synthesis, characterization and density functional theory investigations of tris-cyclopentadienyl compounds of zirconium and hafniumPalmer, Erick J. 10 March 2005 (has links)
No description available.
|
4 |
Interplays of CO<sub>2</sub>, Subnanometer Metal Clusters, and TiO<sub>2</sub>: Implications for Catalysis and CO<sub>2</sub> PhotoreductionYang, Chi-Ta 16 September 2015 (has links)
This research is motivated by two significant challenges facing the planet: reducing the emission of CO2 to the atmosphere and production of sustainable fuels by harnessing solar energy. The main objective of this work is the study of promising photocatalysts for CO2 reduction. DFT modeling of CO2, subnanometer Ag&Pt clusters, and anatase TiO2 (101) surface is employed to gain fundamental understanding of the catalytic process, followed by validation using a guided experimental endeavor. The binding mechanism of CO2 on the surface is investigated in detail to gain insights into the catalytic activity and to assist with characterizing the photocatalyst. For CO2 photoreduction, the cluster induced sub-bandgap and the preferred adsorbate in the first and key step of the CO2 photoreduction are explored.
It is found that TiO2-supported Pt octamers offer key advantages for CO2 photoreduction: 1. by providing additional stable adsorption sites for favored CO2 species in the first step, and 2. by aiding in CO2- anion formation. Electronic structure analysis suggests these factors arise primarily from the hybridization of the bonding molecular orbitals of CO2 with d orbitals of the Pt atoms. Also, structural fluxionality is quantified to investigate geometry dependent (3D-2D) CO2 adsorption. Geometric information, electronic information, and C-O bond breaking tendency of adsorbed CO2 species are proposed to connect to experimental observables (IR frequency). The CO2 adsorption sites on supported Pt clusters are also identified using IR as the indicator. A cluster-induced CO2 dissociation to CO pathway is also discovered. Finally, experimental work including dendrimer-encapsulated technique, TPD, and UV-Vis is performed to validate the computational results, the availability of adsorption sites and CO2 binding strength on supported Pt clusters.
|
Page generated in 0.0825 seconds