• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Evolution of Tachinid Pollination in Neotinea Ustulata Is Related to Floral Cuticular Composition and the Combined High Relative Production of (Z)-11-C23/C25enes

Martel, Carlos, Rakosy, Demetra, Romero, Pedro E., Jersáková, Jana, Ayasse, Manfred 01 January 2021 (has links)
Among terrestrial orchids, and particularly among the subtribe Orchidinae, flies are underrepresented as pollinators. The European Neotinea ustulata, which developed specialized pollination by tachinid flies, is known to produce high relative concentrations of the floral cuticular alkenes (Z)-11-tricosene and (Z)-11-pentacosene (referred to as (Z)-11-C23/C25enes), which seem to be uncommon among orchid flowers. If the evolution of tachinid pollination is related to that of (Z)-11-C23/C25enes, we can expect that closely related species have a different floral chemical pattern and significantly small or no production of (Z)-11-C23/C25enes, independently of their pollinator guild identity (e.g., bees, flies, moths). We chemically compared the floral cuticular composition among Neotinea species, performed electrophysiological analyses, reconstructed the phylogenetic Orchidinae tree, and identified the evolutionary history of pollinator guild and (Z)-11-C23/C25enes production within the Orchidinae. Neotinea ustulata has evolved a markedly different floral cuticular composition compared to other Neotinea and produces both compounds ((Z)-11-C23/C25enes) in high relative quantities (i.e., above 8% in combination), which are detectable by tachinid antennae. Moreover, most Orchidinae taxa have minimal or no production of these alkenes, independently of the identity of their pollinator guild. Our ancestral reconstruction suggested that (Z)-11-C23/C25enes production was an evolutionary exaptation in Neotinea, whereas tachinid pollination was a unique evolutionary innovation for N. ustulata. Floral cuticular composition and, in particular, the combined production of (Z)-11-C23/C25enes at relatively high concentrations is intimately linked to the evolution of tachinid pollination within the Orchidinae.
2

Reproductive biology and ex situ conservation of the genus Restrepia (Orchidaeae)

Millner, Helen Jean January 2013 (has links)
The genus Restrepia is well known to orchid enthusiasts but its micromorphology has not been described, and its pollination and breeding systems have not been investigated. The aim of this investigation was, therefore, to add to existing knowledge so that the resultant data could be used to facilitate ex situ conservation initiatives. A detailed electron microscopy study (SEM) of the floral organs was performed. This confirmed the structure of the dorsal sepal and lateral petal osmophores, their secretory nature together with that of the synsepal and the labellum. It was postulated how, by manipulating different labellar surface textures, the flower might use these ‘tactile guides’ to steer the insect (fly) through the flower. The cirrhi were postulated to help by destabilising the pollinator in flight, trapping it and bringing about pollination. The papillate structure of the calli was established and their optical properties investigated. Media comparison investigations established that Western medium supported the highest germination rates and, with the addition of banana supplement, the highest rates for seedling growth and development. This represented the first protocol for axenic germination of Restrepia in the literature (Millner et al., 2008) and provided a tested methodology for investigating breeding systems and producing Restrepia plant material for both scientific and horticultural purposes. Self-pollinations were found to produce fewer embryos compared to cross-pollinations. The operation of self-incompatibility (SI) was confirmed by the study of pollen tube growth which further confirmed the time interval between pollination and fertilisation. A time line from pollination/fertilisation to flowering was established. The type of SI in operation was best explained by gametophytic incompatibility. This demonstrated that it was possible to raise Restrepia hybrids and species from seed, by performing intraspecific crosses so helping to preserve them for posterity and relieve pressure on wild populations. Narrow endemic Restrepia species face combined threats from habitat loss, habitat degradation and problems of viable seed production due to the effects of SI and inbreeding depression (ID). Recently developed online resources, such as GeoCAT, were used to perform a Red List assessment in order to identify the degree of threat individual species faced, both globally and nationally. All species were classified as facing substantial levels of threat; although this was lessened for populations in protected habitats. Conservation is needed for cultivated collections as well as these wild populations by keeping alive existing knowledge and expertise in growing these species.

Page generated in 0.1404 seconds