• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Non-Ionic Surfactants and Nano-Particles on the Stability of Foams

Wang, Ruijia 27 April 2010 (has links)
The thin film pressure balance (TFPB) technique were used to study the stability of single foam films produced in the presence of n-alkyl polyoxyethylene (CnEOm) homologues. The results showed that films thin faster than predicted by the classical DLVO theory, which considers contributions from the van der Waals-dispersion and double-layer forces to the disjoining pressure of the film. The discrepancy may be attributed to the presence of hydrophobic force, the magnitude of which has been estimated using the Reynolds lubrication approximation. It has been found that the attractive hydrophobic force was substantially larger than the attractive van der Waals force, which may explain the faster film thinning kinetics. With a given non-ionic surfactant, the hydrophobic force decreased with increasing surfactant concentration, which explained the slower kinetics observed at higher concentrations and hence the increased foam stability. At concentrations where the hydrophobic force became comparable to or smaller than the van der Waals force, the foam films were stabilized by the increased elasticity of the foam films. The film elasticity of the surfactant solutions were measured using the oscillating drop analysis technique at different frequencies. The measurements were conducted in the presence of CnEOm surfactants with n=10-14 and m=4-8, and the results were analyzed using the Lucassen and van den Tempel model (1972). There was a reasonable fit between the experiment and the model predictions when using the values of the Gibbs elasticity calculated from the Wang and Yoon model (2006). From this exercise, it was possible to determine the diffusion coefficients (D) of the CnEOm surfactants. The D values obtained for CnEOm surfactants were in the range of 2.5x10-10 to 6x10-9 m2s-1, which are in general agreement with those reported in the literature for other surfactants. The diffusion coefficient decreased with increasing alkyl chain length (n) and increased with increasing chain length (m) of the EO group. These findings are in agreement with the results of the dynamic surface tension measurements conducted in the present work. The TFPB studies were also conducted on the foam films stabilized in the presence of a mixture of C12EO8 and sodium dodecylsulfate (SDS) at different ratios. The results showed that the hydrophobic force increased with increasing C12EO8 to SDS ratio. Thus, the former was more effective than the latter in decreasing the hydrophobic force and hence stabilizing foam films. The C12EO8 was more efficient than SDS in increasing the elasticity of the single foam films and stabilizing foams. The TFPB studies were also conducted in the presence of n-octadecyltimethyl chloride (C18TACl) and polymers, i.e., polyvinylpyrrolidone (PVP) and polystyrene sulfonate (PSS). The effect of polymer on the film elasticity was strongest in the presence of PSS, which can be attributed to the charge-charge interaction. Nano-sized silica and poly methyl methacrylate (PMMA) particles were used as solid surfactants to stabilize foams. It was found that the foam stability was maximum at contact angles just below 90o. The TFPB studies conducted with silica nano-particles showed that the kinetics of foam films became slower as the contact angle was increased from 30o to 77 o , indicating that foam films becomes more stable with more hydrophobic particles. The extra-ordinary stability observed with the hydrophobic silica nano-particles may be attributed to the possibility that the particles adsorbed on bubble surfaces retard the drainage rate and prevent the films to reach the critical rupture thickness (Hc). Confocal microscope and SEM images showed that hydrophobized nano-particles adsorbed on the surfaces of air bubbles, and that some of the nano-particles form aggregates depending on the particle size and hydrophobicity. The dynamic surface tension measurements conducted with PMMA and silica nano-particles showed that the latter has higher diffusion rates than the former, which may be due to the differences in particle size and hydrophobicity. / Ph. D.
2

Surface Forces in Foam Films

Wang, Liguang 04 April 2006 (has links)
Fundamental studies of surface forces in foam films are carried out to explain the stability of foams and froths in froth flotation. The thin film pressure balance (TFPB) technique was used to study the surface forces between air bubbles in water from equilibrium film thickness and dynamic film thinning measurements. The results were compared with the disjoining pressure predicted from the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The contribution from the non-DLVO force was estimated by subtracting the electrostatic double-layer and van der Waals forces from the total force (or pressure) measured. The results obtained in the present work suggest that a strong attractive force (referred to as hydrophobic force) exists at very low surfactant concentrations, and that it decreases with increasing surfactant and/or electrolyte concentrations. In contrast, pH changes have only minor effects on the hydrophobic force. The changes in the hydrophobic force observed at low surfactant concentration region have been related to foam stability in flotation. In addition, an analytical model applicable to a broad range of surfactant concentration was developed to calculate film elasticity from surface tension. The model finds, however, that the film elasticities change little at low surfactant concentrations. It is, therefore, suggested that bubble coalescence and foam stability at low surfactant concentrations may be largely affected by hydrophobic force. The TFPB technique was also used to study the surface forces in the foam films stabilized with various frothers such as pentanol, octanol, methyl isobutyl carbinol (MIBC), and polypropylene glycol (PPG). The results were compared with the foam stabilities measured using the shake tests and the film elasticity calculated using the model developed in the present work. It was found that at a low electrolyte concentration foam stability is controlled by film elasticity and surface forces, the relative contributions from each changing with frother concentration and type. It is, therefore, proposed that one can control the foam stability in flotation by balancing the elasticities of foam films and the disjoining pressure in the films, particularly the contributions from the hydrophobic force. / Ph. D.
3

Comparison of Foaming Properties Between Chelated Reconstituted SMP and Caseinates

Liu, Boya 01 June 2016 (has links) (PDF)
Caseinate powders have been well accepted because of their foaming properties. In this study, 10% solution of reconstituted skim milk powder (SMP) chelated with sodium hexametaphosphate (SHMP) and trisodium citrate (TSC) at 1 mEq, 50 mEq, and 100 mEq were prepared to conduct a comparison with sodium caseinate, potassium caseinate, and calcium caseinate solutions. Foamability, foam stability as well as the preferential locations of αs-casein, β-casein and !-casein in their foams were analyzed. It was hypothesized that the foamability, foam stability and the preferential locations of these three caseins in the milk foams are different from treatment to treatment. Milk foam was generated with an air- injection method at a flow rate of 0.30 L/M for 18 seconds. Foam stability was measured through half-life method. The foam composition was quantified with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. Analysis of Variance (ANOVA) test results concluded that there were no significant differences detected in foamability (p>0.05). On the other hand, foam stability differed significantly among the treatments. Foams of reconstituted SMP-treated with 1 mEq SHMP and TSC were significantly more stable compared to other treatments (p < 0.05), β-casein (p>0.05) and !-casein (p>0.05). In conclusion, the addition of calcium chelating salts might increase the foamability to the same level as caseinate solutions. Furthermore, the study proved that the combination of calcium chelating salts and chelator levels is able to alter the foam stability.
4

Foam-facilitated oil displacement in porous media

Osei-Bonsu, Kofi January 2017 (has links)
Foam flow in porous media is important for many industrial operations such as enhanced oil recovery, remediation of contaminated aquifers and CO2 sequestration. The application of foam in these processes is due to its unique ability to reduce gas mobility and to divert gas to low permeability zones in porous media which otherwise would not be reached. To achieve optimum success with foam as a displacing fluid in oil recovery and remediation operations, it is essential to understand how different parameters influence foam flow in porous media. In this thesis, a variety of experimental techniques were used to study foam stability, foam rheology as well as the dynamics and patterns of oil displacement by foam under different boundary conditions such as surfactant formulation, oil type, foam quality (gas fraction) and porous media geometry. Bulk scale studies showed that foam stability was surfactant and oil dependant such that decreasing oil carbon number and viscosity decreased the stability of foam. However, no meaningful correlation was found between foam stability at bulk scale and the efficiency of oil displacement in porous media for the various surfactants studied in this work. Additionally, our results show that foams consisting of smaller bubbles do not necessarily correspond to higher apparent viscosity as the foam quality is also crucial. For the same foam quality decreasing bubble size resulted in higher apparent viscosity. Although in theory a higher apparent viscosity (i.e. higher foam quality) would be ideal for displacement purposes, increasing foam quality resulted in less stable foam in porous media due to formation of thin films which were less stable in the presence of oil. The effect of pore geometry on foam generation and oil displacement has also been investigated. Our findings provide new insights about the physics and complex dynamics of foam flow in porous media.
5

Stabilizace pivní pěny pomocí biosurfaktantů / Beer foam stabilization using biosurfactants

Jandrtová, Sabina January 2019 (has links)
This diploma thesis focuses on a research of the foam stability of the beer. We specifically observed the influence of ethanol and surface tension on the foam stability, and influence of ethanol and surface tension on the height of the foam. It was observed the influence of the hop acids in non-alcoholic beers. Furthermore, different biosurfactants were added into to the beer to observe better stability of the foam. The theoretical part of this work describes the foam from the physical aspect. There are described fourth key events involved in foam formation. Then it focuses on the beer foam – its structure, substances that influence its behavior and measurement of the foam stability. In this part there are described biosurfactants as well – their characteristics, qualities, distribution and applications. The experimental part is dedicated to the influence of ethanol, surface tension, the amount of iso- acids on foam stability in beer. There is observed the influence of biosurfactants of the foam stability and surface tension, which are added into to the beer. For the measurement of the foam stability was used the Rudin method. Liquid chromatography with DAD detector was used for the measurement the amount of the hop acids. The surface tension was determined by tensiometer. According to the results addition of ethanol changed the characteristics of the foam stability, but it’s not easy to find correlation between the increasing amount of ethanol and its stability. It was found out, that there is connection between the amount of ethanol and surface tension. On the other hand, there is not much connection between the surface tension and foam height. Within the framework of addition of biosurfactants was observed, that these foaming agents interacted the surface tension of the beer (lowering), however these agents accelerated the fall of the beer foam.
6

ENHANCING AIR-WATER INTERFACE STABILITY WITH HEAT-TREATED WHEY PROTEIN IOSLATE (WPI)/HIGH ACYL GELLAN GUM (HAGG) COMPLEX PARTICLES

Rui Zhu (16637310) 08 August 2023 (has links)
<p>  </p> <p>  In this study, whey protein isolate (WPI) and high gellan gum (HAGG) were selected as natural ingredients to produce food-grade biopolymer particles for stabilizing the air-water interface. To achieve this, different mixing ratios of WPI and HAGG were employed, and heat treatment was implemented at different pH levels under the same concentration based on investigations of the pH-driven phase behavior of the WPI/HAGG complex system. The resulting WPI/HAGG complex particles were then evaluated for their ability to stabilize air-water interfaces by measuring their foaming properties.</p> <p><br></p> <p>  Foams generated using 0.1% (wt/wt) WPI/HAGG complex particles, heated at pH 5 with the mixing ratio 2:1 has demonstrated enhanced stability over a period of 30 hours compared to the WPI alone. The unique properties of these complex particles, including their smaller size (around 500nm), greater negative charge (more negative than -30 mV), and compact spherical core-shell structure, along with the higher viscosity in the continuous phase as well as the presence of small protein particles and gellan chains at the interface, collectively contribute to their superior performance as foam stabilizers. This allows for the creation of aerated food products with desirable characteristics, including product handling, enhanced texture, and prolonged shelf life in food industry.</p>
7

[pt] MISTURAS DE BIS-(2-HIDROXIETIL) COCOALQUILAMINA (C12) E OUTROS SURFACTANTES PARA OBTENÇÃO DE ESPUMAS ESTÁVEIS CONTENDO CO2 EM CONDIÇÕES DE SALINIDADE, ALTA PRESSÃO E TEMPERATURA / [en] MIXTURES BIS-(2-HYDROXYETHYL) COCOALKYLAMINE (C12) AND OTHER SURFACTANTS TO OBTAIN STABLE FOAMS CONTAINING CO2 UNDER SALINITY, HIGH PRESSURE AND TEMPERATURE CONDITIONS

VINICIUS DE JESUS TOWESEND 22 November 2022 (has links)
[pt] O uso de espumas de CO2 em aplicações de recuperação avançada de petróleo (EOR) requer a formação de espumas estáveis sob condições adversas de reservatório, como salmouras contendo cátions bivalentes, alta temperatura e pressão, e uma ampla faixa de pH. Nesse contexto, os surfactantes responsivos ao pH que se comportam como surfactantes não-iônicos em meio básico (ausência de CO2), e são convertidos em espécies catiônicas em condições ácidas (presença de CO2), têm se mostrado uma alternativa adequada para formulações espumantes usadas em métodos de EOR baseados em injeção de CO2. O bis-(2-hidroxietil) cocoalquilamina (C12) se destaca como um surfactante responsivo ao pH (pKa = 6,4) promissor, com potencial para estas aplicações. Contudo, há poucos trabalhos sobre as propriedades das espumas de C12 em diferentes condições de pH, principalmente quando o surfactante se encontra na forma não-iônica. O objetivo deste trabalho foi estudar o comportamento deste surfactante em misturas, visando potencializar suas propriedades espumantes através de efeitos de sinergia na interface. Para isso foram estudadas diferentes propriedades do C12, como comportamento de fases, propriedades interfaciais e comportamentos das espumas, tanto em formulações individuais quanto em misturas com outros surfactantes. Estes dados foram correlacionados com o comportamento do C12 em diferentes condições (pH, temperatura, pressão, e misturas de diferentes composições). Foi observado que em condições básicas ocorre separação de fases, enquanto a espumabilidade e a estabilidade das espumas de C12 no estado catiônico (pH menor que pKa) foram superiores, comparado ao estado não-iônico (pH maior que pKa). Para as misturas de C12 com outros surfactantes (alfa-olefina sulfonato de sódio, AOS; alquilamina etoxilada, TFA20; e cocamidopropil hidroxisultaína, CAHS), as formulações contendo CAHS promoveram uma melhora da solubilidade do C12 em pH alcalinos, estendendo sua aplicabilidade, e foram as únicas a exibir uma sinergia significativa em relação à redução da tensão superficial e à estabilização da espuma. A sinergia interfacial entre C12 e CAHS foi confirmada pelo valor negativo do parâmetro de interação. O efeito sinérgico na estabilidade da espuma também foi observado em condições de alta pressão (100 bar) e alta temperatura (65 graus C), evidenciado pela diminuição da taxa de crescimento de bolhas obtida com a mistura C12:CAHS (1:2) em relação aos componentes individuais, o qual indica uma redução dos fenômenos de coalescência e envelhecimento de Ostwald. Os resultados obtidos neste estudo, mostraram o potencial do uso de misturas sinérgicas com surfactantes para ajustar a sua solubilidade e as propriedades das espumas de surfactantes responsivos ao pH, para um melhor desempenho dos métodos de EOR baseados no uso de espuma sob condições de alta pressão e alta temperatura. / [en] The use of CO2-foams in enhanced oil recovery (EOR) applications requires the formation of stable foams under harsh reservoir conditions, such as brines containing divalent cations, high temperature and pressure and a wide pH range. In this context, pH-responsive surfactants that behave as nonionic surfactants in a basic medium (absence of CO2), and are converted to cationic species under acidic conditions (presence of CO2), have been shown to be a suitable alternative for foaming formulations used in CO2-based EOR methods. The bis-(2-hydroxyethyl) cocoalkylamine (C12) has been reported as a promising pH-responsive surfactant (pKa = 6.4), with great potential for this type of applications. However, there is limited work on the properties of C12 foams under different pH conditions, especially in the nonionic state of the surfactant. This work aimed to study the behavior of this surfactant in mixtures, aiming to improve its foaming properties through synergy effects at the interface. For this, different properties of C12 were studied, such as phase behavior, interfacial properties, and foam behavior, in individual formulations and in mixtures with other surfactants. These data were correlated with the individual behavior of C12 under different conditions (pH, temperature, pressure, mixtures of different compositions). It was observed that under basic conditions phase separation occurs, while the foamability and stability of C12 foams in the cationic state (pH less than pKa) were higher compared to the nonionic state (pH bigger then pKa). For mixtures of C12 with other surfactants (sodium olefin sulfonate, AOS; ethoxylated alkylamine, TFA20; and cocamidopropyl hydroxysultaine, CAHS), formulations containing CAHS promoted an improvement in the solubility of C12 at alkaline pH, extending its applicability, and were the only ones to exhibit significant synergy in terms of surface tension reduction and foam stabilization. The interfacial synergy between C12 and CAHS was confirmed by the negative value of the interaction parameter. The synergistic effect on foam stability was also observed under high pressure (100 bar) and high temperature (65 degrees C) conditions, evidenced by the decrease in the bubble growth rate obtained with the C12:CAHS mixture (1:2) in relation to the individual components, which indicates a reduction of the Ostwald ripening and coalescence. The results obtained in this study showed the potential use of synergistic mixtures of surfactants to adjust the solubility and properties of foams with pH-responsive surfactants for better performance in foam-based EOR methods, under high pressure and high temperature conditions.

Page generated in 0.0909 seconds