• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correlations between injection molding and welding of microcellular materials

Heidrich, Dario, Brückner, Eric, Gehde, Michael 08 November 2017 (has links) (PDF)
Due to the rising demand of light-weight constructions as well as the conservation of resources, the density and weight of thermoplastic parts could be influenced significantly by using the thermoplastic foam injection molding process. The structure of the foam injection molded part, which typically means solid surface layers and a cellular core, usually results in a weight saving. Furthermore the materials structure leads to an increasing of the specific bending stiffness with a simultaneous low tendency to warp. The present study was aimed to analyze the interactions between microcellular structure, joining process and the resulting mechanical properties of the molded part. Therefore, the microcellular injection molding process (MuCell®) as well as the vibration welding were used. Whereas the established welding processes for solid injection molded parts have already achieved a high degree of perfection within the last decades, the joining of microcellular thermoplastics entails several specific characteristics, because the injection foaming process highly influences the basic material properties. In contrast to solid materials, the weld seam properties after joining are mainly affected by the design constraints of the microcellular structure.
2

Correlations between injection molding and welding of microcellular materials

Heidrich, Dario, Brückner, Eric, Gehde, Michael 08 November 2017 (has links)
Due to the rising demand of light-weight constructions as well as the conservation of resources, the density and weight of thermoplastic parts could be influenced significantly by using the thermoplastic foam injection molding process. The structure of the foam injection molded part, which typically means solid surface layers and a cellular core, usually results in a weight saving. Furthermore the materials structure leads to an increasing of the specific bending stiffness with a simultaneous low tendency to warp. The present study was aimed to analyze the interactions between microcellular structure, joining process and the resulting mechanical properties of the molded part. Therefore, the microcellular injection molding process (MuCell®) as well as the vibration welding were used. Whereas the established welding processes for solid injection molded parts have already achieved a high degree of perfection within the last decades, the joining of microcellular thermoplastics entails several specific characteristics, because the injection foaming process highly influences the basic material properties. In contrast to solid materials, the weld seam properties after joining are mainly affected by the design constraints of the microcellular structure.

Page generated in 0.0605 seconds