• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison between database and Internet of Thing solutions : For remote measuring of radon

Svensson, Wictor January 2018 (has links)
More and more devices around us are connected to the internet and communicate to each other. This includes devices such as radon sensors. Radon is a radio active gas and is the cause of several hundred cases of lung cancer. Smart connected radon sensors can be helpful to reduce the levels of radon as they provide remote access to the user. This study examines the opportunity to connect an already existing radon sensor to the “Internet of Things”. The aim of this study has been to answer the problem “find a better solution for the IoT system and develop it”. The study was performed with a literature study of three Internet of Things platforms. This resulted in one Internet of Thing platform being used throughout the study. A database system and a system with the chosen platform was implemented and a time measurement of the different systems was performed. The study has shown that a less secured system is faster and it is also shown that the Amazon Web Service IoT Core is fast with respect to the many features offered. The study concludes that the choice of system depends on where and how the system is supposed to be implement. If the system just needs to send and store data, a regular MySQL database is enough. If the system in the future is supposed to be able to communicate with other devices, a IoT platform should be used.
2

The fog-unit : Evaluation of the fog-unit’s effect on network performance

Holm, Rasmus January 2018 (has links)
Today at various locations and factories we have a lot of sensors and actuators that interact with each other and a control-unit. The control-unit is in most cases a cloud-based solution. This is in most cases a good solution. However, there is a rise in expected devices and sensors which will most likely be too much data for the existing network to handle. This paper researches if a fog-unit might be the solution to this problem. The setup of the fog-unit in the network is a unit between the cloud and the sensors and actuators. In this paper the fog-unit and sensors/actuators have been emulated on Raspberry Pi’s. The sensors are emulated using python-threads and communicate with the fog-unit using the UDP-based protocol CoAP and the fog communicates to the cloud using the TCP- based protocol MQTT. After a prototype was built it using said Raspberry Pi’s it was sent through a few measurements in the fields of bandwidth, cloud-utilization and response times. This was later compared to another setup without the fog-unit as the control setup. The result with this kind of setup was that a fog-unit lowers the cloud-utilization and use of bandwidth, however it increases the round trip time of a request from the cloud by a large amount. Which leads to the conclusion that a fog-unit in this kind of setup might be a good network solution if the response time to the cloud isn’t important.

Page generated in 0.0365 seconds