• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the expression of INSR and FOX Genes in Celiac Disease

Hagos, Daniel Yemane January 2012 (has links)
Celiac disease (CD) is a common heritable immune related disorder where chronic inflammationof the small intestine is induced by the ingestion of gluten. The immune response leads to theinflammation and flattening of intestinal mucosa due to the damaged villi and thus results indefects in the absorption of nutrients. This defect can affect any organ or body system and exposeto the risk of lifelong complications such as cancer, autoimmune diseases and other complexdiseases. Now a day, celiac disease is becoming one of the well-studied models of complexdisorders.The PI3K- FOX signaling pathway is activated by many regulators and growth factors and playsa key role in cell cycle. Two components of this pathway, INSR and FOX, play crucial roles indiverse aspects of embryogenesis from the initial tissue genesis up to organ formation. INSR andFOX take part in development, differentiation, proliferation, apoptosis and stress resistance aswell as metabolism. SNP´s could affect the expression of neighboring genes. These SNP´s areshown to be as eQTLs, genomic loci that regulate the expression of genes. The aim of this studywas to detect and quantitate the expression of INSR and certain FOX genes in celiac disease.Quantitative real time PCR (QPCR) was used to analyze the expression of INSR, FOXO1,FOXO4 and FOXD3 genes in 38 celiac cases and 50 control samples. Three reference genesACTB, EPCAM and PGK1 were tested for their expression stability and their average was used inthe normalization procedure. Gene expression results were analyzed using the ΔCt method. Theexpression of INSR, FOXO1, FOXO4 and FOXD3 were described as their fold change in CDcompared to normal non-celiac mucosa. Our results indicated that FOXO4 and INSR wereexpressed less by 0.60 fold and FOXO1 was expressed less by 0.23 fold in CD samples. Theresults are preliminary and further studies will be needed to confirm if these findings are a resultof the intestinal inflammation in CD or if these genes are partly driving the disease itself.
2

Evaluation of Some Statistical Methods for the Identification of Differentially Expressed Genes

Haddon, Andrew L 24 March 2015 (has links)
Microarray platforms have been around for many years and while there is a rise of new technologies in laboratories, microarrays are still prevalent. When it comes to the analysis of microarray data to identify differentially expressed (DE) genes, many methods have been proposed and modified for improvement. However, the most popular methods such as Significance Analysis of Microarrays (SAM), samroc, fold change, and rank product are far from perfect. When it comes down to choosing which method is most powerful, it comes down to the characteristics of the sample and distribution of the gene expressions. The most practiced method is usually SAM or samroc but when the data tends to be skewed, the power of these methods decrease. With the concept that the median becomes a better measure of central tendency than the mean when the data is skewed, the tests statistics of the SAM and fold change methods are modified in this thesis. This study shows that the median modified fold change method improves the power for many cases when identifying DE genes if the data follows a lognormal distribution.
3

Comparaison des méthodes d'analyse de l'expression différentielle basée sur la dépendance des niveaux d'expression

Lefebvre, François 03 1900 (has links)
La technologie des microarrays demeure à ce jour un outil important pour la mesure de l'expression génique. Au-delà de la technologie elle-même, l'analyse des données provenant des microarrays constitue un problème statistique complexe, ce qui explique la myriade de méthodes proposées pour le pré-traitement et en particulier, l'analyse de l'expression différentielle. Toutefois, l'absence de données de calibration ou de méthodologie de comparaison appropriée a empêché l'émergence d'un consensus quant aux méthodes d'analyse optimales. En conséquence, la décision de l'analyste de choisir telle méthode plutôt qu'une autre se fera la plupart du temps de façon subjective, en se basant par exemple sur la facilité d'utilisation, l'accès au logiciel ou la popularité. Ce mémoire présente une approche nouvelle au problème de la comparaison des méthodes d'analyse de l'expression différentielle. Plus de 800 pipelines d'analyse sont appliqués à plus d'une centaine d'expériences sur deux plateformes Affymetrix différentes. La performance de chacun des pipelines est évaluée en calculant le niveau moyen de co-régulation par l'entremise de scores d'enrichissements pour différentes collections de signatures moléculaires. L'approche comparative proposée repose donc sur un ensemble varié de données biologiques pertinentes, ne confond pas la reproductibilité avec l'exactitude et peut facilement être appliquée à de nouvelles méthodes. Parmi les méthodes testées, la supériorité de la sommarisation FARMS et de la statistique de l'expression différentielle TREAT est sans équivoque. De plus, les résultats obtenus quant à la statistique d'expression différentielle corroborent les conclusions d'autres études récentes à propos de l'importance de prendre en compte la grandeur du changement en plus de sa significativité statistique. / Microarrays remain an important tool for the measurement of gene expression, and a myriad of methods for their pre-processing or statistical testing of differential expression has been proposed in the past. However, insufficient and sometimes contradictory evidence has prevented the emergence of a strong consensus over a preferred methodology. This leaves microarray practitioners to somewhat arbitrarily decide which method should be used to analyze their data. Here we present a novel approach to the problem of comparing methods for the identification of differentially expressed genes. Over eight hundred analytic pipelines were applied to more than a hundred independent microarray experiments. The accuracy of each analytic pipeline was assessed by measuring the average level of co-regulation uncovered across all data sets. This analysis thus relies on a varied set of biologically relevant data, does not confound reproducibility for accuracy and can easily be extended to future analytic pipelines. This procedure identified FARMS summarization and the TREAT gene ordering statistic as algorithms significantly more accurate than other alternatives. Most interestingly, our results corroborate recent findings about the importance of taking the magnitude of change into account along with an assessment of statistical significance.
4

Comparaison des méthodes d'analyse de l'expression différentielle basée sur la dépendance des niveaux d'expression

Lefebvre, François 03 1900 (has links)
La technologie des microarrays demeure à ce jour un outil important pour la mesure de l'expression génique. Au-delà de la technologie elle-même, l'analyse des données provenant des microarrays constitue un problème statistique complexe, ce qui explique la myriade de méthodes proposées pour le pré-traitement et en particulier, l'analyse de l'expression différentielle. Toutefois, l'absence de données de calibration ou de méthodologie de comparaison appropriée a empêché l'émergence d'un consensus quant aux méthodes d'analyse optimales. En conséquence, la décision de l'analyste de choisir telle méthode plutôt qu'une autre se fera la plupart du temps de façon subjective, en se basant par exemple sur la facilité d'utilisation, l'accès au logiciel ou la popularité. Ce mémoire présente une approche nouvelle au problème de la comparaison des méthodes d'analyse de l'expression différentielle. Plus de 800 pipelines d'analyse sont appliqués à plus d'une centaine d'expériences sur deux plateformes Affymetrix différentes. La performance de chacun des pipelines est évaluée en calculant le niveau moyen de co-régulation par l'entremise de scores d'enrichissements pour différentes collections de signatures moléculaires. L'approche comparative proposée repose donc sur un ensemble varié de données biologiques pertinentes, ne confond pas la reproductibilité avec l'exactitude et peut facilement être appliquée à de nouvelles méthodes. Parmi les méthodes testées, la supériorité de la sommarisation FARMS et de la statistique de l'expression différentielle TREAT est sans équivoque. De plus, les résultats obtenus quant à la statistique d'expression différentielle corroborent les conclusions d'autres études récentes à propos de l'importance de prendre en compte la grandeur du changement en plus de sa significativité statistique. / Microarrays remain an important tool for the measurement of gene expression, and a myriad of methods for their pre-processing or statistical testing of differential expression has been proposed in the past. However, insufficient and sometimes contradictory evidence has prevented the emergence of a strong consensus over a preferred methodology. This leaves microarray practitioners to somewhat arbitrarily decide which method should be used to analyze their data. Here we present a novel approach to the problem of comparing methods for the identification of differentially expressed genes. Over eight hundred analytic pipelines were applied to more than a hundred independent microarray experiments. The accuracy of each analytic pipeline was assessed by measuring the average level of co-regulation uncovered across all data sets. This analysis thus relies on a varied set of biologically relevant data, does not confound reproducibility for accuracy and can easily be extended to future analytic pipelines. This procedure identified FARMS summarization and the TREAT gene ordering statistic as algorithms significantly more accurate than other alternatives. Most interestingly, our results corroborate recent findings about the importance of taking the magnitude of change into account along with an assessment of statistical significance.
5

Characterization of Leptin Signaling in the Developing Zebrafish (Danio rerio) Using Molecular, Physiological, and Bioinformatic Approaches

Dalman, Mark R. January 2014 (has links)
No description available.

Page generated in 0.0651 seconds