• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approches spectro-spatiales pour la classification d'images hyperspectrales

Tarabalka, Yuliya 14 June 2010 (has links) (PDF)
L'imagerie hyperspectrale enregistre un spectre detaillé de la lumière reçue dans chaque position spatiale de l'image. Comme des matières différentes manifestent des signatures spectrales différentes, l'imagerie hyperspectrale est une technologie bien adaptée pour la classification précise des images, ce qui est une tâche importante dans beaucoup de domaines appliqués. Cependant, la grande dimension des données complique l'analyse des images. La plupart des techniques de classification proposées précédemment traitent chaque pixel indépendamment, sans considérer l'information sur les structures spatiales. Cependant, la recherche récente en traitement d'images a souligné l'importance de l'incorporation du contexte spatial dans les classifieurs. Dans cette thèse, nous proposons et développons des nouvelles méthodes et algorithmes spectro-spatiaux pour la classification précise des données hyperspectrales. D'abord, l'intégration de la technique des Machines à Vecteurs de Support (SVM) dans le cadre des Champs Aléatoires de Markov (MRFs) pour la classification contextuelle est étudiée. Les SVM et les modèles markoviens sont les deux outils efficaces pour la classification des données de grande dimension et pour l'analyse contextuelle d'images, respectivement. Dans un second temps, nous avons proposé des méthodes de classification qui utilisent des voisinages spatiaux adaptatifs dérivés des résultats d'une segmentation. Nous avons étudié différentes techniques de segmentation et nous les avons adaptées pour le traitement des images hyperspectrales. Ensuite, nous avons développé des approches pour combiner les régions spatiales avec l'information spectrale dans un classifieur. Nous avons aussi étudié des techniques pour réduire la sur-segmentation en utilisant des marqueurs des structures spatiales d'intérêt afin d'effectuer la segmentation par marqueurs. Notre proposition est d'analyser les résultats de la classification probabiliste afin de sélectionner les pixels les plus fiablement classés comme des marqueurs des régions spatiales. Nous avons proposé plusieurs méthods pour la sélection des marqueurs, qui utilisent soit des classifieurs individuels, soit un ensemble de classifieurs. Ensuite, nous avons développé des techniques pour la segmentation par croissance de régions issues des marqueurs, en utilisant soit la ligne de partage d'eaux, soit une forêt couvrante de poids minimal, qui ont pour résultat les cartes de segmentation et de classification contextuelle. Finalement, nous considerons les possibilités du calcul parallèle à haute performance sur les processeurs d'un usage commode afin de réduire la charge du calcul. Les nouvelles méthodes développées dans cette thèse améliorent les résultats de classification par rapport aux méthodes proposées précédemment, et ainsi montrent un grand potentiel pour les différents scénarios de l'analyse d'image.

Page generated in 0.1155 seconds