• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of sugar, starch and pectin as microbial energy sources on in vitro forage fermenation kinetics

Malan, Marcia 03 1900 (has links)
Thesis (MScAgric) -- Stellenbosch University, 2009. / ENGLISH ABSTRACT: Ruminants have a compound stomach system that enables them to utilize forages more efficiently than monogastric animals. However, forages alone do not contain sufficient nutrients to meet the requirements of high producing dairy cows. Forages are high in fibre and their nutrient availability depends on the degree of cell wall degradability. Improvements in forage fermentation would increase energy intake and subsequently milk production and performance by dairy cows. It is therefore important to find ways to improve forage degradation and utilization in the rumen. The use of different non-fibre carbohydrate (NFC) sources has different effects on animal performance. Supplementing forage based diets with energy sources containing sugar, starch or pectin results in variation in performance measurements such as milk yield, milk composition and dry matter intake (DMI). This thesis reports on two studies in which the effect of energy supplementation on forage fermentation and digestion parameters was investigated. In the first study an in vitro gas production protocol was used to determine the effect of sugar (molasses), starch (maize meal) and pectin (citrus pulp) on total gas production and rate of gas production of different forages. The forage substrates included wheat straw (WS), oat hay, (OH) lucerne hay (LUC), ryegrass (RYE) and kikuyu grass (KIK). The three energy sources, as well as a control (no energy source) were incubated in vitro with each of the above mentioned forages. Rumen fluid was collected from two lactating Holstein cows receiving a diet consisting of oat hay, lucerne, wheat straw and a concentrate mix. Forages alone (0.25 g DM) and/or together (0.125 g DM) with either molasses (0.1412 g DM), citrus pulp (0.1425 g DM) or maize meal (0.125 g DM) were weighed into glass vials and incubated for 72 hours. The weights of the energy sources were calculated on an energy equivalent basis. Blank vials, that contained no substrates, were included to correct for gas production from rumen fluid alone. The substrates were incubated in 40 ml buffered medium, 2 ml of reducing solution and 10 ml rumen fluid. Gas pressure was recorded automatically every five minutes using a pressure transducer system and the method based on the Reading Pressure Technique (Mauricio et al., 1999). Gas pressure was converted to gas volume using a predetermined regression equation. In the first gas production trial, the gas production included gas produced by the energy sources, while in the second gas production trial, the energy source gas production was deducted from the total gas production to determine the effect of energy source on gas production of respective forage substrates per se. Data were fitted to two non-linear models adapted from Ørskov and McDonald (1979). Significant forage x energy interactions were observed for the non-linear parameter gas production (b) in Model 1 and for b and lag phase (L) in Model 2 in both trials. In the first gas production trial, the higher fermentability of the energy sources supplemented to forage substrates, increased b (Model 1 & 2) of the LUC and WS. The gas production rate was affected in different ways for different forages, with the most noticeable effect on WS when it was supplemented with energy sources. All the energy sources increased c of WS irrespective of the model used. Energy sources had no effect on the L of LUC, OH or RYE, but decreased the L of WS and KIK. In the second trial, maize meal had no effect on b for any of the forages (Model 1 & 2), while molasses (Model 1 & 2) decreased b for all forage substrates, and citrus pulp (Model 1 & 2) decreased b of OH and RYE, to lower values than those of the control treatments. Gas production rate was not affected by molasses for any of the forage substrates, while citrus pulp (Model 1 & 2) increased c of OH and maize meal increased c of OH and KIK. Lag phase was only affected by energy sources in WS and KIK, where all the energy sources had lower L values than the control treatment. It was concluded that forage fermentability is affected differently by different energy sources. These observations may have important implications, in practice, on rumen health and milk production, and the data obtained can potentially be used as guidelines in feed formulations. In the second study, in vitro digestibility trials were undertaken to determine the effect of sugar (molasses and sucrose), starch (maize meal and maize starch) and pectin (citrus pulp and citrus pectin) on neutral detergent fibre (NDF) and dry matter (DM) degradability of forages. Forage substrates used included wheat straw, oat hay, lucerne hay, ryegrass and kikuyu grass. Rumen fluid was collected from two lactating Holstein cows receiving a diet consisting of oat hay, wheat straw and a concentrate mix. In vitro degradability was done with an ANKOM Daisy II incubator and forage substrates were incubated with or without the respective energy sources for 24, 48 and 72 hours. The substrates were incubated in 1076 ml buffered medium, 54 ml of reducing solution and 270 ml rumen fluid. The residues were washed, dried and analyzed for NDF. In the study with the applied energy sources (molasses, maize meal and citrus pulp) there were a forage x energy source interactions. Supplementation with the applied energy sources all improved dry matter degradability (DMD) of forages (24 and 72 hours), when compared to the control treatment, except for RYE supplemented with maize meal and citrus pulp at 24 hours. Molasses seemed to have had the biggest effect on DMD in all forage substrates. Supplementation with maize meal had no effect on neutral detergent fibre degradability (NDFD) of any forage substrate, except for an improvement in NDFD of LUC at 72 hours. Molasses improved NDFD of LUC at 24h, but had no effect on the other forage substrates. Citrus pulp improved NDFD of OH (72 hours), as well as LUC and WS (24 and 72 hours). It is postulated that the NDF of the energy sources was more digestible than that of the respective forages, and that the improved NDFD values could be ascribed to the contribution of the energy source NDFD. Overall, pasture grasses had a higher NDFD than the hays and straw, and appear to be more readily fermentable by rumen microbes than the low quality hays and straw explaining the higher NDFD. In the study involving the purified energy sources (sucrose, maize starch and citrus pectin), forage x energy source interactions were observed. In general, supplementation with these energy sources improved DMD at 24 and 72 hours except for RYE and KIK (72 hours). Pasture grasses (RYE and KIK) had a higher NDFD than LUC, OH and WS. At 72 hours, NDFD was 37.1% for LUC, 42.5% for OH and 40.3% for WS, compared to 70.5% for KIK and 64.9% for RYE. A possible explanation is that KIK and RYE samples came from freshly cut material, harvested after a 28d re-growth period. In general, sucrose (24 and 72 hours) and citrus pectin (72 hours) had no effect on NDFD of forage substrates. However, supplementing oat hay (24 hours) with starch and citrus pectin, and wheat straw (24 and 72 hours) with starch lowered NDFD, when compared to the control treatment. It is hypothesized that microbes fermented the easily fermentable energy sources first, before attacking forage NDF. The study suggested that forage NDFD values are not fixed, and may be altered by type of energy supplementation. / AFRIKAANSE OPSOMMING: Die meervoudige maagsisteem van herkouers stel hulle in staat om ruvoer meer effektief te benut as enkelmaagdiere. Ruvoere alleen bevat egter nie genoeg voedingstowwe om die behoeftes van hoogproduserende melkbeeste te bevredig nie. Ruvoere is ryk aan vesel en hul voedingstofbeskikbaarheid word bepaal deur die graad van selwand degradeerbaarheid. ‘n Verhoging in ruvoerfermentasie sal energieinname verhoog en gevolglik ook melkproduksie en prestasie. Dit is dus belangrik om maniere te vind om ruvoerdegradeerbaarheid en -verbruik in die rumen te verbeter. Die gebruik van verskillende nie-vesel koolhidraat (NFC) bronne het verskillende uitwerkings op die prestasie van diere. Energie-aanvullings soos suiker, stysel en pektien tot ruvoer-gebasseerde diëte, beïnvloed prestasiemaatstawwe soos melkproduksie, melksamestelling en droëmateriaalinname (DMI) op verskillende maniere. Hierdie tesis lewer verslag oor twee studies waar die invloed van energie-aanvullings op ruvoerfermentasie en verteringsmaatstawwe ondersoek is. In die eerste studie is ‘n in vitro gasproduksieprotokol gebruik om die invloed van suiker (melasse), stysel (mieliemeel) en pektien (sitruspulp) op totale gasproduksie (b) en tempo van gasproduksie (c) van verskillende ruvoersubstrate te bepaal. Ruvoersubstrate wat gebruik is, was koringstrooi (WS), hawerhooi (OH), lusernhooi (LUC), raaigras (RYE) en kikuyugras (KIK). Die drie energiebronne, sowel as ‘n kontrole (geen energiebron), is in vitro geïnkubeer saam met elk van die genoemde ruvoere. Rumenvloeistof is verkry van twee lakterende Holsteinkoeie, wat ‘n dieet ontvang het bestaande uit hawerhooi, koringstrooi en ‘n kragvoermengsel. Ruvoere is alleen en/of in kombinasie met melasse (0.1412 g DM), sitruspulp (0.1425 g DM) of mieliemeel (0.125 g DM) in glasbottels afgeweeg en vir 72 uur geïnkubeer. Die massas van die energiebronne is op ‘n energie-ekwivalente basis bereken. Leë bottels wat geen substraat bevat het nie, is ingesluit om te korrigeer vir gasproduksie afkomstig vanaf rumenvloeistof alleen. Substrate is in 40 ml van ‘n buffermedium, 2 ml reduserende oplossing en 10ml rumenvloeistof geïnkubeer. Gasdruk is elke vyf minute outomaties aangeteken deur gebruik te maak van ‘n drukmetersisteem en die metode is gebasseer op die Reading gasdruktegniek. Gasdruk is omgeskakel na gasvolume deur gebruik te maak van ‘n voorafbepaalde regressievergelyking. In die eerste proef het totale gasproduksie die gas wat deur die onderskeie energiebronne geproduseer is, ingesluit. In die tweede proef is gasproduksie afkomstig van die energiebronne afgetrek van totale gasproduksie, om sodoende die invloed van die energiebronne per se op die gasproduksie van die onderskeie ruvoersubstrate, te bepaal. Data is met behulp van twee nie-liniëre modelle gepas. Betekenisvolle ruvoer x energie-interaksies is in albei proewe waargeneem vir die nie-liniëre parameter b (gasproduksie) in Model 1, en vir b en L (sloerfase) in Model 2. In die eerste proef het die energiebronne se hoë fermentasie gelei to ‘n verhoging in b (Model 1 & 2) van LUC en WS. Energie-aanvullings het die c-waarde van die onderskeie ruvoere verskillend beïnvloed, met WS wat die mees opvallende effek gehad het. Al die energiebronne het die c-waarde van WS verhoog, ongeag watter model gebruik is. Energiebronne het geen invloed op die L-waarde van LUC, OH of RYE gehad nie, maar het wel die L-waarde van WS en KIK verlaag. In die tweede proef het mieliemeel geen invloed op die b-waarde van enige van die ruvoere gehad nie (Model 1 & 2), terwyl melasse (Model 1 & 2) die b-waarde van alle ruvoere verlaag het, en sitruspulp (Model 1 & 2) OH en RYE se b waardes verlaag het tot laer as die kontroles. Melasse het geen invloed op die c-waarde van die onderskeie ruvoersubstrate gehad nie, terwyl sitruspulp (Model 1 & 2) die c-waarde van OH, en mieliemeel die c-waarde van OH en KIK, verhoog het. Energiebronne het slegs ‘n invloed op die sloerfase in WS en KIK gehad, waar dit L verlaag het tot laer waardes as dié van die kontroles. Daar is gevind dat ruvoer-fermenteerbaarheid verskillend beïnvloed word deur verskillende energiebronne. Bogenoemde resultate kan in die praktyk betekenisvolle invloede hê op rumengesondheid en melkproduksie en die data wat verkry is, kan potensieël gebruik word as riglyne in voerformulerings. In die tweede studie is in vitro verteerbaarheidsproewe gedoen om die effek van suiker (molasse en sukrose), stysel (mieliemeel en mieliestysel) en pektien (sitruspulp en sitrus-pektien) op neutraalonoplosbare vesel (NDF) en droë materiaal (DM) degradeerbaarheid van ruvoere, te bepaal. Ruvoersubstrate wat gebruik is, was WS, OH, LUC, RYE en KIK. Rumen vloeistof is verkry van twee lakterende Holstein koeie, wat ‘n dieet ontvang het bestaande uit hawerhooi, koringstrooi en ‘n konsentraat mengsel. Die in vitro degradeerbaarheidsproef is gedoen met ‘n ANKOM Daisy II inkubator. Ruvoersubstrate is geïnkubeer met of sonder die onderskeie energiebronne vir 24, 48 en 72 uur. Die substrate is geïnkubeer in 1076 ml buffer medium, 54 ml reduserende oplossing en 270 ml rumen vloeistof. Residue is gewas, gedroog en geanaliseer vir NDF. In die proef met toegepaste energiebronne (molasse, mieliemeel en sitruspulp), was daar ruvoer x energiebron interaksies. Toegepaste energiebron aanvullings het almal DMD van ruvoersubstrate (24 en 72 uur) verbeter, uitsluitend vir RYE wat aangevul is met mieliemeel (24 uur) en sitruspulp (24 uur). Van al die ruvoersubstrate het molasse die grootste effek gehad op DMD. Mieliemeel aanvullings het geen effek gehad op neutraal-onoplosbare vesel degradeerbaarheid (NDFD) van ruvoersubstrate nie, behalwe vir ‘n verbetering in NDFD van LUC by 72 uur. Molasse het NDFD van lucern by 24 uur verbeter, maar geen effek gehad op ander ruvoersubstrate nie. Sitruspulp het NDFD van OH (72 uur), asook LUC en WS (24 & 72 uur) verbeter. Daar word beweer dat die NDF van energiebronne meer verteerbaar is as die van ruvoersubstrate, en dat die verbetering in NDFD waardes toegeskryf kan word aan die bydraes van energiebronne se NDFD. Weidingsgrasse (RYE & KIK) het oor die algemeen ‘n hoër NDFD as hooie en strooi gehad. Rumen mikrobes blyk ook om dié grasse vinniger te verteer as lae kwaliteit hooie en strooi, wat gevolglik die hoër NDFD verduidelik. In die proef met suiwer energiebronne (sukrose, mieliestysel en sitrus-pektien) is ruvoer x energiebron interaksies waargeneem. Energiebronaanvullings het DMD by 24 en 72 uur verbeter, buiten vir RYE en KIK (72 uur). Weidingsgrasse het hoër NDFD as LUC, OH en WS. By 72 uur was die NDFD van LUC 37.1%, OH 42.5%, WS 40.3%, in vergelyking met 70.5% vir KIK en 64.9% vir RYE. ‘n Moontlike verklaring vir die hoër NDFD van KIK en RYE, is omdat dit vars gesnyde material is, geoes na slegs 28 dae hergroei. Oor die algemeen het sukrose (24 & 72 uur) en sitrus-pektien (72 uur) geen effek gehad op NDFD van ruvoersubstrate nie, terwyl stysel en pektien aanvullings tot OH (24 uur), en stysel aanvullings tot WS (24 & 72 uur) NDFD verlaag het. Daar word hipotetieseer dat mikrobes eers die vinnig fermenteerbare energiebronne fermenteer, voordat hulle ruvoer NDF aanval. Hierdie studie beweer dat ruvoer NDFD waardes nie vas is nie, en dat dié waardes beïnvloed mag word deur energiebron aanvullings.
2

The effect of sugar, starch and pectin as microbial energy sources on in vitro forage fermentation kinetics

Malan, Marcia 03 1900 (has links)
Thesis (MScAgric (Animal Sciences))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Ruminants have a compound stomach system that enables them to utilize forages more efficiently than monogastric animals. However, forages alone do not contain sufficient nutrients to meet the requirements of high producing dairy cows. Forages are high in fibre and their nutrient availability depends on the degree of cell wall degradability. Improvements in forage fermentation would increase energy intake and subsequently milk production and performance by dairy cows. It is therefore important to find ways to improve forage degradation and utilization in the rumen. The use of different non-fibre carbohydrate (NFC) sources has different effects on animal performance. Supplementing forage based diets with energy sources containing sugar, starch or pectin results in variation in performance measurements such as milk yield, milk composition and dry matter intake (DMI). This thesis reports on two studies in which the effect of energy supplementation on forage fermentation and digestion parameters was investigated. In the first study an in vitro gas production protocol was used to determine the effect of sugar (molasses), starch (maize meal) and pectin (citrus pulp) on total gas production and rate of gas production of different forages. The forage substrates included wheat straw (WS), oat hay, (OH) lucerne hay (LUC), ryegrass (RYE) and kikuyu grass (KIK). The three energy sources, as well as a control (no energy source) were incubated in vitro with each of the above mentioned forages. Rumen fluid was collected from two lactating Holstein cows receiving a diet consisting of oat hay, lucerne, wheat straw and a concentrate mix. Forages alone (0.25 g DM) and/or together (0.125 g DM) with either molasses (0.1412 g DM), citrus pulp (0.1425 g DM) or maize meal (0.125 g DM) were weighed into glass vials and incubated for 72 hours. The weights of the energy sources were calculated on an energy equivalent basis. Blank vials, that contained no substrates, were included to correct for gas production from rumen fluid alone. The substrates were incubated in 40 ml buffered medium, 2 ml of reducing solution and 10 ml rumen fluid. Gas pressure was recorded automatically every five minutes using a pressure transducer system and the method based on the Reading Pressure Technique (Mauricio et al., 1999). Gas pressure was converted to gas volume using a predetermined regression equation. In the first gas production trial, the gas production included gas produced by the energy sources, while in the second gas production trial, the energy source gas production was deducted from the total gas production to determine the effect of energy source on gas production of respective forage substrates per se. Data were fitted to two non-linear models adapted from Ørskov and McDonald (1979). Significant forage x energy interactions were observed for the non-linear parameter gas production (b) in Model 1 and for b and lag phase (L) in Model 2 in both trials. In the first gas production trial, the higher fermentability of the energy sources supplemented to forage substrates, increased b (Model 1 & 2) of the LUC and WS. The gas production rate was affected in different ways for different forages, with the most noticeable effect on WS when it was supplemented with energy sources. All the energy sources increased c of WS irrespective of the model used. Energy sources had no effect on the L of LUC, OH or RYE, but decreased the L of WS and KIK. In the second trial, maize meal had no effect on b for any of the forages (Model 1 & 2), while molasses (Model 1 & 2) decreased b for all forage substrates, and citrus pulp (Model 1 & 2) decreased b of OH and RYE, to lower values than those of the control treatments. Gas production rate was not affected by molasses for any of the forage substrates, while citrus pulp (Model 1 & 2) increased c of OH and maize meal increased c of OH and KIK. Lag phase was only affected by energy sources in WS and KIK, where all the energy sources had lower L values than the control treatment. It was concluded that forage fermentability is affected differently by different energy sources. These observations may have important implications, in practice, on rumen health and milk production, and the data obtained can potentially be used as guidelines in feed formulations. In the second study, in vitro digestibility trials were undertaken to determine the effect of sugar (molasses and sucrose), starch (maize meal and maize starch) and pectin (citrus pulp and citrus pectin) on neutral detergent fibre (NDF) and dry matter (DM) degradability of forages. Forage substrates used included wheat straw, oat hay, lucerne hay, ryegrass and kikuyu grass. Rumen fluid was collected from two lactating Holstein cows receiving a diet consisting of oat hay, wheat straw and a concentrate mix. In vitro degradability was done with an ANKOM Daisy II incubator and forage substrates were incubated with or without the respective energy sources for 24, 48 and 72 hours. The substrates were incubated in 1076 ml buffered medium, 54 ml of reducing solution and 270 ml rumen fluid. The residues were washed, dried and analyzed for NDF. In the study with the applied energy sources (molasses, maize meal and citrus pulp) there were a forage x energy source interactions. Supplementation with the applied energy sources all improved dry matter degradability (DMD) of forages (24 and 72 hours), when compared to the control treatment, except for RYE supplemented with maize meal and citrus pulp at 24 hours. Molasses seemed to have had the biggest effect on DMD in all forage substrates. Supplementation with maize meal had no effect on neutral detergent fibre degradability (NDFD) of any forage substrate, except for an improvement in NDFD of LUC at 72 hours. Molasses improved NDFD of LUC at 24h, but had no effect on the other forage substrates. Citrus pulp improved NDFD of OH (72 hours), as well as LUC and WS (24 and 72 hours). It is postulated that the NDF of the energy sources was more digestible than that of the respective forages, and that the improved NDFD values could be ascribed to the contribution of the energy source NDFD. Overall, pasture grasses had a higher NDFD than the hays and straw, and appear to be more readily fermentable by rumen microbes than the low quality hays and straw explaining the higher NDFD. In the study involving the purified energy sources (sucrose, maize starch and citrus pectin), forage x energy source interactions were observed. In general, supplementation with these energy sources improved DMD at 24 and 72 hours except for RYE and KIK (72 hours). Pasture grasses (RYE and KIK) had a higher NDFD than LUC, OH and WS. At 72 hours, NDFD was 37.1% for LUC, 42.5% for OH and 40.3% for WS, compared to 70.5% for KIK and 64.9% for RYE. A possible explanation is that KIK and RYE samples came from freshly cut material, harvested after a 28d re-growth period. In general, sucrose (24 and 72 hours) and citrus pectin (72 hours) had no effect on NDFD of forage substrates. However, supplementing oat hay (24 hours) with starch and citrus pectin, and wheat straw (24 and 72 hours) with starch lowered NDFD, when compared to the control treatment. It is hypothesized that microbes fermented the easily fermentable energy sources first, before attacking forage NDF. The study suggested that forage NDFD values are not fixed, and may be altered by type of energy supplementation. / AFRIKAANSE OPSOMMING: Die meervoudige maagsisteem van herkouers stel hulle in staat om ruvoer meer effektief te benut as enkelmaagdiere. Ruvoere alleen bevat egter nie genoeg voedingstowwe om die behoeftes van hoogproduserende melkbeeste te bevredig nie. Ruvoere is ryk aan vesel en hul voedingstofbeskikbaarheid word bepaal deur die graad van selwand degradeerbaarheid. ‘n Verhoging in ruvoerfermentasie sal energieinname verhoog en gevolglik ook melkproduksie en prestasie. Dit is dus belangrik om maniere te vind om ruvoerdegradeerbaarheid en -verbruik in die rumen te verbeter. Die gebruik van verskillende nie-vesel koolhidraat (NFC) bronne het verskillende uitwerkings op die prestasie van diere. Energie-aanvullings soos suiker, stysel en pektien tot ruvoer-gebasseerde diëte, beïnvloed prestasiemaatstawwe soos melkproduksie, melksamestelling en droëmateriaalinname (DMI) op verskillende maniere. Hierdie tesis lewer verslag oor twee studies waar die invloed van energie-aanvullings op ruvoerfermentasie en verteringsmaatstawwe ondersoek is. In die eerste studie is ‘n in vitro gasproduksieprotokol gebruik om die invloed van suiker (melasse), stysel (mieliemeel) en pektien (sitruspulp) op totale gasproduksie (b) en tempo van gasproduksie (c) van verskillende ruvoersubstrate te bepaal. Ruvoersubstrate wat gebruik is, was koringstrooi (WS), hawerhooi (OH), lusernhooi (LUC), raaigras (RYE) en kikuyugras (KIK). Die drie energiebronne, sowel as ‘n kontrole (geen energiebron), is in vitro geïnkubeer saam met elk van die genoemde ruvoere. Rumenvloeistof is verkry van twee lakterende Holsteinkoeie, wat ‘n dieet ontvang het bestaande uit hawerhooi, koringstrooi en ‘n kragvoermengsel. Ruvoere is alleen en/of in kombinasie met melasse (0.1412 g DM), sitruspulp (0.1425 g DM) of mieliemeel (0.125 g DM) in glasbottels afgeweeg en vir 72 uur geïnkubeer. Die massas van die energiebronne is op ‘n energie-ekwivalente basis bereken. Leë bottels wat geen substraat bevat het nie, is ingesluit om te korrigeer vir gasproduksie afkomstig vanaf rumenvloeistof alleen. Substrate is in 40 ml van ‘n buffermedium, 2 ml reduserende oplossing en 10ml rumenvloeistof geïnkubeer. Gasdruk is elke vyf minute outomaties aangeteken deur gebruik te maak van ‘n drukmetersisteem en die metode is gebasseer op die Reading gasdruktegniek. Gasdruk is omgeskakel na gasvolume deur gebruik te maak van ‘n voorafbepaalde regressievergelyking. In die eerste proef het totale gasproduksie die gas wat deur die onderskeie energiebronne geproduseer is, ingesluit. In die tweede proef is gasproduksie afkomstig van die energiebronne afgetrek van totale gasproduksie, om sodoende die invloed van die energiebronne per se op die gasproduksie van die onderskeie ruvoersubstrate, te bepaal. Data is met behulp van twee nie-liniëre modelle gepas. Betekenisvolle ruvoer x energie-interaksies is in albei proewe waargeneem vir die nie-liniëre parameter b (gasproduksie) in Model 1, en vir b en L (sloerfase) in Model 2. In die eerste proef het die energiebronne se hoë fermentasie gelei to ‘n verhoging in b (Model 1 & 2) van LUC en WS. Energie-aanvullings het die c-waarde van die onderskeie ruvoere verskillend beïnvloed, met WS wat die mees opvallende effek gehad het. Al die energiebronne het die c-waarde van WS verhoog, ongeag watter model gebruik is. Energiebronne het geen invloed op die L-waarde van LUC, OH of RYE gehad nie, maar het wel die L-waarde van WS en KIK verlaag. In die tweede proef het mieliemeel geen invloed op die b-waarde van enige van die ruvoere gehad nie (Model 1 & 2), terwyl melasse (Model 1 & 2) die b-waarde van alle ruvoere verlaag het, en sitruspulp (Model 1 & 2) OH en RYE se b waardes verlaag het tot laer as die kontroles. Melasse het geen invloed op die c-waarde van die onderskeie ruvoersubstrate gehad nie, terwyl sitruspulp (Model 1 & 2) die c-waarde van OH, en mieliemeel die c-waarde van OH en KIK, verhoog het. Energiebronne het slegs ‘n invloed op die sloerfase in WS en KIK gehad, waar dit L verlaag het tot laer waardes as dié van die kontroles. Daar is gevind dat ruvoer-fermenteerbaarheid verskillend beïnvloed word deur verskillende energiebronne. Bogenoemde resultate kan in die praktyk betekenisvolle invloede hê op rumengesondheid en melkproduksie en die data wat verkry is, kan potensieël gebruik word as riglyne in voerformulerings. In die tweede studie is in vitro verteerbaarheidsproewe gedoen om die effek van suiker (molasse en sukrose), stysel (mieliemeel en mieliestysel) en pektien (sitruspulp en sitrus-pektien) op neutraalonoplosbare vesel (NDF) en droë materiaal (DM) degradeerbaarheid van ruvoere, te bepaal. Ruvoersubstrate wat gebruik is, was WS, OH, LUC, RYE en KIK. Rumen vloeistof is verkry van twee lakterende Holstein koeie, wat ‘n dieet ontvang het bestaande uit hawerhooi, koringstrooi en ‘n konsentraat mengsel. Die in vitro degradeerbaarheidsproef is gedoen met ‘n ANKOM Daisy II inkubator. Ruvoersubstrate is geïnkubeer met of sonder die onderskeie energiebronne vir 24, 48 en 72 uur. Die substrate is geïnkubeer in 1076 ml buffer medium, 54 ml reduserende oplossing en 270 ml rumen vloeistof. Residue is gewas, gedroog en geanaliseer vir NDF. In die proef met toegepaste energiebronne (molasse, mieliemeel en sitruspulp), was daar ruvoer x energiebron interaksies. Toegepaste energiebron aanvullings het almal DMD van ruvoersubstrate (24 en 72 uur) verbeter, uitsluitend vir RYE wat aangevul is met mieliemeel (24 uur) en sitruspulp (24 uur). Van al die ruvoersubstrate het molasse die grootste effek gehad op DMD. Mieliemeel aanvullings het geen effek gehad op neutraal-onoplosbare vesel degradeerbaarheid (NDFD) van ruvoersubstrate nie, behalwe vir ‘n verbetering in NDFD van LUC by 72 uur. Molasse het NDFD van lucern by 24 uur verbeter, maar geen effek gehad op ander ruvoersubstrate nie. Sitruspulp het NDFD van OH (72 uur), asook LUC en WS (24 & 72 uur) verbeter. Daar word beweer dat die NDF van energiebronne meer verteerbaar is as die van ruvoersubstrate, en dat die verbetering in NDFD waardes toegeskryf kan word aan die bydraes van energiebronne se NDFD. Weidingsgrasse (RYE & KIK) het oor die algemeen ‘n hoër NDFD as hooie en strooi gehad. Rumen mikrobes blyk ook om dié grasse vinniger te verteer as lae kwaliteit hooie en strooi, wat gevolglik die hoër NDFD verduidelik. In die proef met suiwer energiebronne (sukrose, mieliestysel en sitrus-pektien) is ruvoer x energiebron interaksies waargeneem. Energiebronaanvullings het DMD by 24 en 72 uur verbeter, buiten vir RYE en KIK (72 uur). Weidingsgrasse het hoër NDFD as LUC, OH en WS. By 72 uur was die NDFD van LUC 37.1%, OH 42.5%, WS 40.3%, in vergelyking met 70.5% vir KIK en 64.9% vir RYE. ‘n Moontlike verklaring vir die hoër NDFD van KIK en RYE, is omdat dit vars gesnyde material is, geoes na slegs 28 dae hergroei. Oor die algemeen het sukrose (24 & 72 uur) en sitrus-pektien (72 uur) geen effek gehad op NDFD van ruvoersubstrate nie, terwyl stysel en pektien aanvullings tot OH (24 uur), en stysel aanvullings tot WS (24 & 72 uur) NDFD verlaag het. Daar word hipotetieseer dat mikrobes eers die vinnig fermenteerbare energiebronne fermenteer, voordat hulle ruvoer NDF aanval. Hierdie studie beweer dat ruvoer NDFD waardes nie vas is nie, en dat dié waardes beïnvloed mag word deur energiebron aanvullings.

Page generated in 0.133 seconds