• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Evaluation and Characterization of a Mobility Assist Device Physical Interface

Levesque, Laurent De B 04 April 2018 (has links)
Ageing is linked to a decrease in mobility, which affects the quality of life of many elderly individuals. This is a growing challenge in industrialised societies since the proportion of elderly individuals is becoming larger. One potential solution that would keep these individuals active and independent is the use of mobility assist devices. These devices are designed to reduce the energy demand of the user with the use of electric motors providing torques at joints of the lower limb. Although promising, these devices have a problem: they become uncomfortable after prolonged usage. This is especially true for devices designed to produce substantial assistance. The research goal consisted of quantifying the performance of the physical interfaces, or points of attachments, of an experimental device with multiple interface adjustments. The device was fabricated with design criteria similar to active assist devices to simulate the mechanical behaviour of these particular devices. This analysis provided design recommendations that could ultimately enhance the performance of assist devices available on the market and thus the quality of life of many individuals. This research used force mapping and motion capture to quantify the kinetic and the kinematic compatibility of the device. Experimental results have shown that the position, shape and other parameters of the interfaces had an effect on the relative movement of the brace, or the brace performance. The device interface migration was greater when the interfaces were positioned furthest away form the joint. An increasing level of assistance showed more relative movement between the brace and the user. Interface geometry had a noticeable effect on force distribution over the interface. The results and methodology of this research offers an in depth understanding of the mechanical behavior of the physical interfaces of the developed assist device. Nevertheless, further research and development in the field of human machine interactions are needed in order to develop a physical human-machine interface that will ensure the success of powered assist devices in the future.
2

Nanomechanics of Barnacle Proteins and Multicomponent Lipid Bilayers Studied by Atomic Force Microscopy

Sullan, Ruby May Arana 23 February 2011 (has links)
Owing to atomic force microscopy’s (AFM) high-resolution in both imaging and force spectroscopy, it is very successful in probing not only structures, but also nanomechanics of biological samples in solution. In this thesis, the nanomechanical properties of lipid bilayers of biological relevance and proteins of the barnacle adhesive were examined using AFM indentation, AFM-based force mapping, and single-molecule pulling experiments. Through high-resolution AFM-based force mapping, the self-organized structures exhibited in phase-segregated supported lipid bilayers consisting of dioleoylphosphatidylcholine / egg sphingomyelin / cholesterol (DEC) in the absence and presence of ceramide (DEC-Ceramide) were directly correlated with their breakthrough forces, elastic moduli, adhesion, and bilayer thickness. Results were presented as two-dimensional visual maps. The highly stable ceramide-enriched domains in DEC-Ceramide bilayers and the effect of different levels of cholesterol as well as of diblock copolymers, on the nanomechanical stability of the model systems studied were further examined. For the proteins of the barnacle adhesive, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and chemical staining with amyloid-selective dyes, in addition to AFM imaging, indentation, and pulling experiments were performed to study the structure and nanomechanics of the polymerized barnacle glue. Nanoscale structures exhibiting rod-shaped, globular, and irregularly shaped morphologies were observed in the bulk barnacle cement by AFM. SEM coupled with energy dispersive x-ray (EDX) makes evident the organic nature of the rod-shaped nanoscale structures while FTIR spectroscopy on the bulk cement gave signatures of β-sheet and random coil conformations. Indentation data yielded higher elastic moduli for the rod-shaped structures as compared to the other structures in the bulk cement. Single molecule AFM force-extension curves on the matrix of the bulk cement often exhibited a periodic sawtooth-like profile, observed in both extend and retract portions of the force curve. Rod-shaped structures stained with amyloid protein-selective dyes (Congo Red and Thioflavin-T) revealed that about 5% of the bulk cement are amyloids.
3

Nanomechanics of Barnacle Proteins and Multicomponent Lipid Bilayers Studied by Atomic Force Microscopy

Sullan, Ruby May Arana 23 February 2011 (has links)
Owing to atomic force microscopy’s (AFM) high-resolution in both imaging and force spectroscopy, it is very successful in probing not only structures, but also nanomechanics of biological samples in solution. In this thesis, the nanomechanical properties of lipid bilayers of biological relevance and proteins of the barnacle adhesive were examined using AFM indentation, AFM-based force mapping, and single-molecule pulling experiments. Through high-resolution AFM-based force mapping, the self-organized structures exhibited in phase-segregated supported lipid bilayers consisting of dioleoylphosphatidylcholine / egg sphingomyelin / cholesterol (DEC) in the absence and presence of ceramide (DEC-Ceramide) were directly correlated with their breakthrough forces, elastic moduli, adhesion, and bilayer thickness. Results were presented as two-dimensional visual maps. The highly stable ceramide-enriched domains in DEC-Ceramide bilayers and the effect of different levels of cholesterol as well as of diblock copolymers, on the nanomechanical stability of the model systems studied were further examined. For the proteins of the barnacle adhesive, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and chemical staining with amyloid-selective dyes, in addition to AFM imaging, indentation, and pulling experiments were performed to study the structure and nanomechanics of the polymerized barnacle glue. Nanoscale structures exhibiting rod-shaped, globular, and irregularly shaped morphologies were observed in the bulk barnacle cement by AFM. SEM coupled with energy dispersive x-ray (EDX) makes evident the organic nature of the rod-shaped nanoscale structures while FTIR spectroscopy on the bulk cement gave signatures of β-sheet and random coil conformations. Indentation data yielded higher elastic moduli for the rod-shaped structures as compared to the other structures in the bulk cement. Single molecule AFM force-extension curves on the matrix of the bulk cement often exhibited a periodic sawtooth-like profile, observed in both extend and retract portions of the force curve. Rod-shaped structures stained with amyloid protein-selective dyes (Congo Red and Thioflavin-T) revealed that about 5% of the bulk cement are amyloids.
4

Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

Soon, Chin Fhong, Tee, K.S., Youseffi, Mansour, Denyer, Morgan C.T. 02 December 2014 (has links)
Yes / Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT) system can be used in conjunction with a bespoke cell traction force mapping (CTFM) software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.
5

Development of a novel cell traction force transducer based on cholesteryl ester liquid crystals. Characterisation, quantification and evaluation of a cholesteryl ester liquid crystal based single cell force transducer system.

Soon, Chin Fhong January 2011 (has links)
In biomechano-transducing, cellular generated tension can be measured by soft substrates based on polymers but these techniques are limited either by spatial resolution or ability to detect localised cell traction forces (CTF) due to their non-linear viscous behaviour under shear rates. A newly developed cell traction force transducer system based on cholesteryl ester lyotropic liquid crystals (LCTFT) was developed to sense localised traction forces of human keratinocyte cell lines (HaCaTs), in which the length of the deformation line induced represents the intensity of the CTF exerted. The physical properties of the cholesteryl ester based lyotropic liquid crystals (LLC) were characterised by using polarising microscopy, rheology, atomic force microscopy (AFM) based nano-indentation, spherical indentation, and micro-tensile tests. The interactions of LLC with cells were studied by using cell viability studies, cytochemical treatments, widefield surface plasmon resonance (WSPR) microscopy and various immuno-staining techniques. The results show that LLC is thermally stable (0 - 50 oC) and linearly viscoelastic below 10 % shear strain at shear rates of < 1 s-1. AFM nano and spherical indentations show a good agreement on the Young¿s modulus of both determined at ~110 kPa which is close to the elastic modulus of the epidermis. The Poisson¿s ratio of LLC was determined at ~0.58 by using micro tensile tests. The biophysical interaction studies indicated that LLC is biocompatible and allowed cell attachment. Cell relaxation technique by cytochalasin-B treatment suggested that the attachment and contraction of cells on LLC was due to the contractile activity of actin cytoskeletons that are mediated by focal adhesions. The staining experiments showed that cells consistently expressed the same suites of integrins (¿2, ¿3, ¿5 and ¿1) and ECM proteins (collagen type IV, laminin and fibronectin) on both glass and LLC coated substrates. Interfacial interaction of cells with LLC observed via the staining of actin and vinculin, and WSPR imaging suggest the association of marginal actin filaments and focal adhesions in attaching HaCaT cells to the LLC. Linear static analysis applied in the Finite Element model of focal adhesion-LC confirmed the compressive force patterns induced by cells. By applying cell relaxation techniques and Hooke¿s theorem, the force-deformation relationships of the LLC were derived and used for direct quantification of CTF in culture. The sensitivity of the LCTFT was implied by a wide range of CTF (10 - 140 nN) measured at high resolutions (~2 ¿m). Nonetheless, a custom-built cell traction force measurement and mapping software (CTFM) was developed to map CTF of single cells. Reliability of the LCTFT was evaluated by using a known pharmacological active cytokine, TGF-¿1, in inducing contraction of human keratinocytes. This study inferred internal consistency and repeatability of the LCTFT in sensing contraction responses of HaCaT cells in a concentration dependent manner of TGF-¿1. The overall LCTFT and CTFM software had shown good potential for use in the study of contraction and migration of keratinocytes. / Malaysia Ministry of Higher Education
6

In Situ Optically Trapped Probing System for Molecular Recognition and Localization

WAN, JINGFANG 28 September 2009 (has links)
No description available.
7

Development of a novel cell traction force transducer based on cholesteryl ester liquid crystals : characterisation, quantification and evaluation of a cholesteryl ester liquid crystal based single cell force transducer system

Soon, Chin Fhong January 2011 (has links)
In biomechano-transducing, cellular generated tension can be measured by soft substrates based on polymers but these techniques are limited either by spatial resolution or ability to detect localised cell traction forces (CTF) due to their non-linear viscous behaviour under shear rates. A newly developed cell traction force transducer system based on cholesteryl ester lyotropic liquid crystals (LCTFT) was developed to sense localised traction forces of human keratinocyte cell lines (HaCaTs), in which the length of the deformation line induced represents the intensity of the CTF exerted. The physical properties of the cholesteryl ester based lyotropic liquid crystals (LLC) were characterised by using polarising microscopy, rheology, atomic force microscopy (AFM) based nano-indentation, spherical indentation, and micro-tensile tests. The interactions of LLC with cells were studied by using cell viability studies, cytochemical treatments, widefield surface plasmon resonance (WSPR) microscopy and various immuno-staining techniques. The results show that LLC is thermally stable (0-50 °C) and linearly viscoelastic below 10% shear strain at shear rates of < 1 s⁻¹. AFM nano and spherical indentations show a good agreement on the Young's modulus of both determined at ~110 kPa which is close to the elastic modulus of the epidermis. The Poisson's ratio of LLC was determined at ~0.58 by using micro tensile tests. The biophysical interaction studies indicated that LLC is biocompatible and allowed cell attachment. Cell relaxation technique by cytochalasin-B treatment suggested that the attachment and contraction of cells on LLC was due to the contractile activity of actin cytoskeletons that are mediated by focal adhesions. The staining experiments showed that cells consistently expressed the same suites of integrins (α2, α3, α5 and β1) and ECM proteins (collagen type IV, laminin and fibronectin) on both glass and LLC coated substrates. Interfacial interaction of cells with LLC observed via the staining of actin and vinculin, and WSPR imaging suggest the association of marginal actin filaments and focal adhesions in attaching HaCaT cells to the LLC. Linear static analysis applied in the Finite Element model of focal adhesion-LC confirmed the compressive force patterns induced by cells. By applying cell relaxation techniques and Hooke's theorem, the force-deformation relationships of the LLC were derived and used for direct quantification of CTF in culture. The sensitivity of the LCTFT was implied by a wide range of CTF (10 - 140 nN) measured at high resolutions (~2 μm). Nonetheless, a custom-built cell traction force measurement and mapping software (CTFM) was developed to map CTF of single cells. Reliability of the LCTFT was evaluated by using a known pharmacological active cytokine, TGF-β1, in inducing contraction of human keratinocytes. This study inferred internal consistency and repeatability of the LCTFT in sensing contraction responses of HaCaT cells in a concentration dependent manner of TGF-β1. The overall LCTFT and CTFM software had shown good potential for use in the study of contraction and migration of keratinocytes.

Page generated in 0.0488 seconds