11 |
Prediction of steady state response in dynamic mode atomic force microscopy and its applications in nano-metrologyOh, Yunje, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 182-189).
|
12 |
Study of magnetic and multiferroic oxides by scanning force microscopeChuang, Tien-Ming, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
13 |
Scanning Probe Microscopy Methods to Study Electrostatic Properties within BiosystemsMoores, Bradley Adam James January 2010 (has links)
Many proteins are known to actively interact with biological, as well as inorganic and synthetic surfaces that are widely used in nano- and bio-technology as biosensing platforms and in tissue engineering. Amyloid fibrils are insoluble protein aggregates in beta-sheet conformation that are implicated in at least 20 diseases for which no cure is currently available. The molecular mechanism of fibril formation, as well as the mechanism of fibril clusters interacting with lipid membrane surfaces is currently unknown. The lipid membrane surface has a complex biochemical composition and is also electrostatically non-homogeneous. Currently, the experimental data available for amyloid fibril formation both on lipid and artificial surfaces is limited. The goal of our study is to investigate how the physical properties of the surfaces affect binding of amyloid peptides and affect the fibril formation. We seek to elucidate the effect of electrostatic interactions of amyloid peptides with surfaces using Atomic Force Microscopy (AFM) and Kelvin probe force microscopy (KPFM). We show using KPFM that electrostatic domains readily form within biological systems such as lung surfactant and lipid monolayers. We compared three different implementations of KPFM to demonstrate that frequency modulated (FM-) KPFM provides significant advantages over other modes. We also present a study of Amyloid beta (1-42) fibril formation on model surfaces, which are uniformly charged or possess periodicity of charges and hydrophobic functionality based on thiol self-assembly. Effect of membrane composition, surface charge, and presence of steroids will be discussed.
|
14 |
Epitaxy of Crystal MonolayersMurdaugh, Anne E. January 2009 (has links)
Epitaxial growth, or the oriented growth of a crystalline monolayer on an ordered substrate, appears in a wide range of systems and applications, from novel device fabrication to freshwater remediation. Despite this, methodical studies of the phenomenon are rare, and the mechanisms governing epitaxial growth are poorly understood. This investigation employs AFM techniques to monitor the epitaxial growth of ion crystal systems at the initial stages of growth. By using systems with well-known physical properties, we are able to relate growth modes to two key parameters, crystal lattice mismatch, Δr/r₀, and affinity between the overgrowth and the substrate ions, ξ. We found wetting growth occurs for systems in which Δr/r₀ is expansive (overgrowth lattice must expand to accommodate substrate) or mildly compressive (overgrowth compresses to accommodate substrate). Additionally, a strong affinity between the substrate and overgrowth ions, in combination with an expansive system, allows for epitaxial growth from undersaturated solutions. We also have observed several instances where the lateral force contrast on the growing film exhibits a strong dependence on the time of exposure to the growth solution and on the driving force for growth (solute concentration). We present results for three epitaxial growth systems in aqueous solutions: CaSO₃ on CaCO₃, PbSO₄ on BaSO₄, and BaSO₃ on BaSO₄. Chemically and topographically identical regions grown at higher concentrations exhibit higher friction than regions grown at lower concentrations. These observations suggest that epitaxial growth occurs by a fast condensation step incorporating a high defect density.
|
15 |
AFM and rheological investigations on colloidal processing of ceramicsCoimbra, David January 2001 (has links)
No description available.
|
16 |
Structural Characterization of Micromechanical Properties in Asphalt Using Atomic Force MicroscopyAllen, Robert Grover 2010 December 1900 (has links)
The purpose of this study was to characterize the micromechanical properties of
various structural components in asphalt using Atomic Force Microscopy (AFM). The
focus of the study was based on nano-indentation experiments performed within a
micro-grid of asphalt phases in order to determine micromechanical properties such as
stiffness, adhesion and elastic/plastic behavior. The change in microstructure and
micromechanical behavior due to oxidative aging of the asphalt was also a primary focus
of the study. The experiment was performed with careful consideration of AFM
artifacts, which can occur due to factors such as geometry of the cantilever tip,
hysteresis, filtering methods and acoustic vibrations. The materials used in this study
included asphalts AAB, AAD and ABD from the Materials Reference Library (MRL) of
the Strategic Highway Research Program (SHRP), chosen due to variations in crude
source, chemical composition and elemental analysis for each asphalt type.
The analysis of nano-indentation creep measurements corresponding to phase-separated
regions ultimately revealed heterogeneous domains in asphalt with different
mechanical properties, and oxidative aging was found to induce substantial microstructural change within these domains, including variations in phase structure,
phase properties and phase distribution. The form and extent of these changes, however,
were different for each asphalt studied. Data analysis and information collected during
this study were used for comparisons to existing models and asphalt data, which
validated results and established correlations to earlier, related studies. From these
comparisons, it was found that data parallels followed expected trends; furthermore,
analogous interpretations and distinctions were made between results from this study and
the micellar and microstructural models of asphalt. This study of micromechanical
properties that govern asphalt behavior has yielded information essential to the
advancement of hot mix asphalt (HMA) performance, including a new asphalt “weak
zone” hypothesis and a foundation of data for implementation into new and existing
asphalt models.
|
17 |
Molecular-Scale Imaging of Surface-Bound DNAs Using Atomic Force Microscopy in Air and LiquidsChiou, Yu-Shan 28 July 2004 (has links)
none
|
18 |
The effect of biopolymer properties on bacterial adhesion an atomic force microscopy AFM) study.Abu-Lail, Nehal Ibrahim. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: Bacterial adhesion; ionic strength; polarity; lipopolysaccharides; heterogeneity; elasticity; FJC; steric interactions; AFM. Includes bibliographical references (p. 303-306).
|
19 |
Fluid mechanics and bio-transport phenomena in imaging of biological membranes using AFM-integrated microelectrodeFan, Tai-Hsi, January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Mechanical Engineering, Georgia Institute of Technology, 2004. Directed by Andrei G. Federov. / Vita. Includes bibliographical references (leaves 155-164).
|
20 |
Detection of polysaccharides on a bacterial cell surface using Atomic Force MicroscopyArora, Bhupinder S. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: Leuconostoc mesenteroides NIRC1542; Atomic Force Microscope; Pseudomonas putida KT2442; Adhesion. Includes bibliographical references (p. 75-83).
|
Page generated in 0.0472 seconds