• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volumetric MRI of the lungs during forced expiration

Berman, Benjamin P., Pandey, Abhishek, Li, Zhitao, Jeffries, Lindsie, Trouard, Theodore P., Oliva, Isabel, Cortopassi, Felipe, Martin, Diego R., Altbach, Maria I., Bilgin, Ali 06 1900 (has links)
Purpose: Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. Methods: A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results: Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6 x 4.6 x 10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion: Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. (C) 2015 Wiley Periodicals, Inc.
2

1D model for flow in the pulmonary airway system

Alahmadi, Eyman Salem M. January 2012 (has links)
Voluntary coughs are used as a diagnostic tool to detect lung diseases. Understanding the mechanics of a cough is therefore crucial to accurately interpreting the test results. A cough is characterised by a dynamic compression of the airways, resulting in large flow velocities and producing transient peak expiratory flows. Existing models for pulmonary flow have one or more of the following limitations: 1) they assume quasi-steady flows, 2) they assume low speed flows, 3) they assume a symmetrical branching airway system. The main objective of this thesis is to develop a model for a cough in the branching pulmonary airway system. First, the time-dependent one-dimensional equations for flow in a compliant tube is used to simulate a cough in a single airway. Using anatomical and physiological data, the tube law coupling the fluid and airway mechanics is constructed to accurately mimic the airway behaviour in its inflated and collapsed states. Next, a novel model for air flow in an airway bifurcation is constructed. The model is the first to capture successfully subcritical and supercritical flows across the bifurcation and allows for free time evolution from one case to another. The model is investigated by simulating a cough in both symmetric and asymmetric airway bifurcations. Finally, a cough model for the complete branching airway system is developed. The model takes into account the key factors involved in a cough; namely, the compliance of the lungs and the airways, the coughing effort and the sudden opening of the glottis. The reliability of the model is assessed by comparing the model predictions with previous experimental results. The model captures the main characteristics of forced expiatory flows; namely, the flow limitation phenomenon (the flow out of the lungs becomes independent of the applied expiratory effort) and the negative effort dependence phenomenon (the flow out of the lungs decreases with increasing expiratory effort). The model also gives a good qualitative agreement with the measured values of airway resistance. The location of the collapsed airway segment during forced expiration is, however, inconsistent with previous experimental results. The effect of changing the model parameters on the model predictions is therefore discussed.
3

Comprehensive Integrated Spirometry Using Raised Volume Passive and Forced Expirations and Multiple-Breath Nitrogen Washout in Infants

Morris, Mohy G. 28 February 2010 (has links)
With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cmH2O (V30). The (dynamic) functional residual capacity (FRCdyn) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V30 or total lung capacity (TLC30). Measurements were performed on 17 healthy infants aged 8.6-119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V30 during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRCst) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity (jSVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRCdyn and FRCst measurements overlapped (p = 0.6420) but neither did with the RV (p < 0.0001). Means (95% confidence interval) of FRCdyn, IC, FRCst, jSVC, RV, forced vital capacity and tidal volume were 21.2 (19.7-22.7), 36.7 (33.0-40.4), 21.2 (19.6-22.8), 40.7 (37.2-44.2), 18.1 (16.6-19.7), 40.7 (37.1-44.2) and 10.2 (9.6-10.7) ml/kg, respectively. Static lung volumes and capacities at V30 and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically integrated approach for in-depth investigation of lung function at V30 in infants.

Page generated in 0.0943 seconds