• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teoria de invariantes de formas binárias

Fehlberg Júnior, Renato 26 March 2010 (has links)
Made available in DSpace on 2016-06-02T20:28:24Z (GMT). No. of bitstreams: 1 2978.pdf: 738093 bytes, checksum: cdf53ae3eecedf2adf9b402da2a3499d (MD5) Previous issue date: 2010-03-26 / Universidade Federal de Sao Carlos / In this work, we studied article [6], that answers the following questions:how are all covariants of binary forms? What are and how to find the canonicalforms of the binary forms of degree n? Is there a finite generating set for theconvariants of binary forms of degree n? The first question will be answered bythe First Fundamental Theorem. The second question will be answered using thetechniques of apolarity. And for application, we will show the results for binaryforms of low degree. Finally, the third question will be answered by the FinitenessTheorem. / Neste trabalho, estudamos o artigo [6], que responde as seguintes perguntas:como são todos os covariantes de formas binárias? Quais são e como encontraras formas canônicas das formas binárias de grau n? Existe um conjunto finito degeradores para os covariantes de formas binárias de grau n? A primeira perguntaserá respondida pelo primeiro teorema fundamental, que nos diz que todos os covariantessão avaliações umbral de polinômios colchete, e vice-versa. A segundaquestão será respondida usando-se as técnicas de apolaridade, e como aplicação datécnica, mostraremos o resultado para formas binárias de grau baixo. E finalmente,a terceira pergunta será respondida pelo Teorema de Finitude.

Page generated in 0.0676 seconds