Spelling suggestions: "subject:"forma, quadratic.""
11 |
Universal quadratic zero forms in four variablesSparks, Fred Winchell, January 1933 (has links)
Thesis (Ph. D.)--University of Chicago, 1931. / Vita. Lithoprinted. "Private edition distributed by the University of Chicago libraries, Chicago, Illinois."
|
12 |
Zur theorie der quadratischen formen ...Beinhorn, Johannes Dietrich Hermann, January 1900 (has links)
Inaug.-dis.--Marburg. / Lebenslauf.
|
13 |
Über die Darstellung von positiven, ganzen Zahlen durch die primitiven, binären quadratischen Formen einer nicht quadratischen DiscriminanteBernays, Paul, January 1912 (has links)
Inaug.-diss.--Göttingen. / Vita.
|
14 |
Die Theorie der binären quadratischen Formen mit Koeffizienten und Unbestimmten in einem beliebigen ZahlkörperSpeiser, Andreas, January 1909 (has links)
Inaug.-diss.--Georg-August-Universität. / Lebenslauf. Bibliographical foot-notes.
|
15 |
The integers represented by sets of positive ternary quadratic non-classic formsSagen, Oswald Karl, January 1936 (has links)
Thesis (Ph. D.)--University of Chicago, 1934. / Vita. Lithoprinted. "Private edition distributed by the University of Chicago libraries, Chicago, Illinois."
|
16 |
Positive Formen der Gestalt ax²by²cz²dt²mit zwei und drei AusnahmewertenWolf, Adolf, January 1963 (has links)
Inaug.-Diss.-Tübingen. / Vita. Includes bibliographical references.
|
17 |
Contribution a l'étude des formes quadratiques a indéterminées conjuguéesLe Corbeiller, Ph. January 1926 (has links)
Thèse--Université de Paris.
|
18 |
Ternäre positiv definite quadratische Formen mit gleichen DarstellungszahlenSchiemann, Alexander. January 1994 (has links)
Thesis (doctoral)--Universität Bonn, 1993. / Includes bibliographical references (p. 41).
|
19 |
The Canonical types of nets of modular conics ...Wilson, Albert Harris, January 1900 (has links)
Thesis (Ph. D.)--University of Chicago, 1911. / Life. "Reprinted from American Journal of mathematics, vol. XXXVI, no. 2, April, 1914." Includes bibliographical references.
|
20 |
Maximum and minimum problems in functions of quadratic formsWestwick, Roy January 1957 (has links)
Let A be an n x n hermitian matrix, let E₂(a₁, …, a_k) be the second elementary symmetric function of the letters a₁, …, a_k and let C₂(A) be the second compound matrix of A. In this thesis the maximum and minimum of det {(Ax_█, x_j)} and E₂ [(Ax₁, x₁), …, (Ax_█(k@), x_k)] the minimum of [formula omitted] (C₂(A)x_i ₁⋀x_i₂ , x_i₁ ⋀ax_i₂) are calculated. The maxima and minima are taken over all sets of k orthonormal vectors in unitary n-space and x_█(i@)₁ ⋀ x_i ₂ designates the Grassman exterior product. These results depend on the inequality E₂(a₁, …, a_k ) ≤ (k/2 ) [formula omitted] which is here established for arbitrary real numbers, and on the minimum of E₂ (x₁, …, x_(k)) where the minimum is taken over all values of x₁, …, x_█(k@) such that ∑_(i=1)^k▒xi = ∑_(i=1)^k▒〖∝i〗 and ∑_(i=1)^q▒xsi ≤ ∑_(i=1)^q▒〖∝i〗 for all sets of q distinct integers s₁, …, s_q taken from 1, …, k. Here α₁ ≥ … ≥ ∝_k. / Science, Faculty of / Mathematics, Department of / Graduate
|
Page generated in 0.1212 seconds