• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 234
  • 199
  • 26
  • 19
  • 14
  • 10
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 968
  • 148
  • 104
  • 98
  • 92
  • 89
  • 74
  • 70
  • 56
  • 53
  • 43
  • 42
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Formulation Of Marketing Strategy In India : Application of the Global Strategy Formulation Model

Nyrell, Lina, Björkman, Jimmie, Petersson, Lovisa January 2009 (has links)
<p>Abstract</p><p>As a part of the strategic planning process a company has to formulate a marketing strategy before entering a new market. For global marketers, formulation of a global marketing strategy is of big importance since it contributes benefits, including raising the efficacy of new-products launches, cost reduction and improving product quality and market share performance. India is a fast growing subcontinent and it is predicted to be among the top five economies in the world by the year 2025. The driving force in the Indian economy is the growing number of people from the middle class, which currently consists of over 300 million Indians. They are consuming progressively more western brands and more and more foreign companies are establishing in the country.</p><p>The purpose of this thesis is to get a better understanding of the Indian market in order to formulate a strategy for this market. The thesis aim to identify how a business to business company, with baby products aimed for the upper class segment, should formulate their marketing strategy. To be able to answer our research question we have conducted a number of qualitative interviews, including a focus group interview with potential Indian consumers. The result of our interviews, empirical data along with our collected theory shows that the Indian market is fragmented and diverse. This thesis tells us that a company offering exclusive products should focus on consumers living in urban areas of India. A company should considerate on important aspects when formulating a marketing strategy for the Indian market: Assessment and adjustment of core strategy (choice of competitive strategy), formulation of a global strategy (choice of competitive strategy, choice of segment, marketing in India, the purchase process, culture) and development of global marketing program (degree of standardization).</p>
102

Modeling pre-existing immunity to adenovirus as a method to identify novel formulations for a protective Ebola vaccine

Choi, Jin Huk 25 February 2013 (has links)
Mucosal delivery of recombinant adenovirus serotype 5 (rAd5)-based vaccine preparations are appealing for vaccine development in terms of lowering toxicity induced by high viral loads and substantial liver accumulation following systemic injection of the vaccine. However, this mode of delivery is currently under-developed due to the relatively low T-cell mediated immune responses generated against the encoded transgene. The first study described in this thesis demonstrated that sublingual immunization induces rapid migration of MHCII+, CD11C+ antigen presenting cells to the delivery site and elicit antigen-specific T and B cell-mediated immune responses in naïve mice and those with pre-existing immunity (PEI) to Ad5 at a level higher than that achieved after oral immunization. More importantly, this strategy improved protection of animals with PEI to Ad in contrast to poor protection after IM injection. The second study was designed to establish a method for inducing PEI that most accurately reflects natural infection in rodents and identifies the immunologic parameters elicited by rAd5-based Ebola vaccine necessary for protection against lethal infection. When immunization occurred by the same route in which PEI was induced, the antigen-specific multifunctional CD8+ T cell and antibody responses were significantly reduced. This correlated with poor survival after challenge with a lethal dose of Ebola Zaire in rodents. The data suggests that 1) establishment of PEI by the same route used for immunization is the most stringent test for a novel formulation designed to be effective in those with PEI to Ad5, and 2) for a formulation to be effective in those with PEI, it must be capable of restoring antigen-specific multifunctional CD8+ T cell and antibody responses, compromised by PEI. The third study screened novel formulations for their ability to improve in vitro transduction efficiency and immunogenicity and efficacy in vivo in the presence of anti-Ad5 neutralizing antibodies. Formulations consisting of pharmaceutically acceptable, non-immunogenic excipients that can prime the arms of immune response compromised by PEI improved survival after lethal challenge with Ebola Zaire challenge for rAd5-based Ebola vaccine in rodents with PEI. Taken together, these studies provide insight on how to reconstitute necessary immune responses in vaccine protocols by establishing a reliable PEI model in rodents, testing routes of administration, and formulations of the rAd5-based Ebola vaccine. / text
103

Inhaled voriconazole formulations for invasive fungal infections in the lungs

Beinborn, Nicole Angela 02 July 2013 (has links)
Attention has begun to focus on the pulmonary delivery of antifungal agents for invasive fungal infections as inhalation of the fungal spores is often the initial step in the pathogenesis of many of these infections. Invasive fungal infection in the lungs in immunocompromised patients has high mortality rates despite current systemic (oral or intravenous) therapies. However, drug delivery of antifungal agents directly to the lungs could potentially result in high concentrations of drug in the lungs, a quicker onset of action, and reduction of systemic side effects. Voriconazole (VRC) is a second, generation triazole antifungal agent with increased potency, a broad spectrum of antifungal activity, and a fairly poor aqueous solubility. It is the recommended therapeutic agent for the treatment of Invasive Pulmonary Aspergillosis (IPA), and its use has improved therapeutic outcomes in immunocompromised patients with IPA. Still, systemic administration by oral or intravenous delivery is limited by high inter- and intra-patient pharmacokinetic variability, many potential drug interactions, and a narrow therapeutic index with many adverse effects, leading to clinical failures. Therefore, development of novel particulate formulations containing VRC for targeted drug delivery to the lungs is critical to improving therapeutic outcomes in patients with invasive fungal infections in the lungs. Within the framework of this dissertation, two particle engineering processes, thin film freezing (TFF) and advanced evaporative precipitation into aqueous solution (AEPAS), were investigated. The goal was to investigate microcrystalline VRC, nanocrystalline VRC, and nanostructured amorphous VRC formulations suitable for pulmonary delivery and to determine the effect of morphology on the in vivo deposition and distribution of inhaled particulate VRC formulations. TFF process parameters significantly affected the solid state properties and aerodynamic performance of the dry powder formulations containing VRC. Following dry powder insufflation into the lungs of mice, microstructured crystalline TFF-VRC achieved higher and more prolonged concentrations of VRC in the lungs with slightly lower systemic bioavailability than nanostructured amorphous TFF-VRC-PVP K25. AEPAS and TFF of template nanoemulsions did not lead to production of crystalline nanoparticles, as predicted. In particular, VRC proved to be a difficult molecule to stabilize in the nanocrystalline and nanostructured amorphous states. Ultimately, this body of work demonstrated that the particle engineering process, TFF, could be used to develop voriconazole formulations suitable for dry powder inhalation with more favorable pharmacokinetic parameters compared to inhaled voriconazole solution. / text
104

On use of inhomogeneous media for elimination of ill-posedness in the inverse problem

Feroj, Md Jamil 17 April 2014 (has links)
This thesis outlines a novel approach to make ill-posed inverse source problem well-posed exploiting inhomogeneous media. More precisely, we use Maxwell fish-eye lens to make scattered field emanating from distinct regions of an object of interest more directive and concentrated onto distinct regions of observation. The object of interest in this thesis is a thin slab placed conformally to the Maxwell fish-eye lens. Focused Green’s function of the background medium results in diagonal dominance of the matrix to be inverted for inverse problem solution. Hence, the problem becomes well-posed. We have studied one-dimensional variation of a very thin dielectric slab of interest having conformal shape to the lens. This method has been tested solving the forward problem using both Mie series and using COMSOL. Most common techniques for solving inverse problem are full non-linear inversion techniques, such as: distorted Born iterative method (DBIM) and contrast source inversion (CSI). DBIM needs to be regularized at every iteration. In some cases, it converges to a solution, and, in some cases, it does not. Diffraction tomography does not utilize regularization. It is a technique under Born approximation. It eliminates ill-posedness, but it works only for small contrast. Our proposed method works for high contrast and also provides well-posedness. In this thesis, our objective is to demonstrate inverse source problem and inverse scattering problem are not inherently ill-posed. They are ill-posed because conventional techniques usually use homogeneous or non-focusing background medium. These mediums do not support separation of scattered field. Utilization of background medium for scattered field separation casts the inverse problem in well-posed form.
105

The impact of case note documentation by counseling trainees on case conceptualization abilities

Kuehl, Gregg A. January 2007 (has links)
The purpose of the study was to examine the effect of STIPS case note documentation and SOAP case note documentation on counseling trainees' perceived case conceptualization abilities. By training master's level counseling students in the use of case note writing and then asking them to rate their perceived conceptualization this study looked at an area of training that has received little attention in the past. This study attempted to begin the process of understanding if case note documentation could be an area that could help counseling students develop their case conceptualization skills.Quantitative and qualitative data analysis was utilized due to the exploratory nature of this study. The quantitative portion examined how the case note documentation affected trainees' perceived case conceptualization abilities while the qualitative portion examined patterns in the responses of participants to open-ended questions about case note documentation.The quantitative results showed that there was no significant difference between the groups in terms of their perceived case conceptualization. The qualitative results indicated that there are benefits and drawbacks to both the STIPS and the SOAP case note formats. / Department of Counseling Psychology and Guidance Services
106

Formulation, in-vitro release and transdermal diffusion of alpha-lipoic acid / Tizane Snyman

Snyman, Tizane January 2009 (has links)
Acne is a common disease characterised by follicular hyperkeratinisation, bacterial hipercolonisation as well as immune reactions and inflammation. In acne, reactive oxygen species (ROS) may be released from the damaged follicular walls, which could cause the advancement of inflammation in the pathogenesis of the disease. The topical application of antioxidants is a promising approach to support the endogenous antioxidant defence and avoid oxidative injury that may lead to acne. The skin provides a painless and patient-friendly approach for systemic drug administration. Transdermal drug delivery not only improves patient compliance, but also avoids the first-pass effect. The major hurdle to penetration of matter through the skin is provided by an outward layer of the skin, the stratum corneurm (SC). Overcoming this barrier safely and reversibly is a fundamental problem in the field of transdermal drug delivery. Alpha-lipoic acid was utilised as the cosmeceutical active and can be classified in a mixed category of compounds that lie between cosmetics and drugs. Alpha-lipoic acid and its reduced form, dihydrolipoic acid, have been described as the "universal antioxidants" because of their capacity to quench a number of free radicals in both aqueous and lipid environments, their metal-chelating properties and ability to restore other antioxidants from their inactive form. The Pheriod™ system is a new manner of drug delivery aimed at overcoming the barrier function of the skin. It consists of vesicular structures, the sizes of which vary from 200-440 nm. These vesicles, prepared from customised essential fatty acids, were found to advance the efficacy of topically administered compounds. The aim of this study was to determine whether the Pheroid™ delivery system would enhance the transdermal delivery of formulations containing alpha-lipoic acid to the target site by performing Franz cell diffusion studies over a 12 hour period, followed by tape-stripping experiments. The results of the formulations containing Pheroid™ were compared to those of the formulations without Pheroid™. Experimental determination of transdermal flux of the alpha-lipoic acid formulations revealed that Pheroid™ improved the transdermal delivery of alpha-lipoic acid. The average flux of Pheroid™ cream from 0 to 2 hours wass 58.01 ± 6.63 ug/cm2.h. The average flux of Pheroid™ gel from 4 to 12 hours was 22.18 ± 3.33 ug/cm2.h. Tape-stripping experiments proved that the concentrations of alpha-lipoic acid in Pheroid™ cream and cream that remained in the epidermis after application to the skin were 569.10 ug/ml and 764.93 ug/ml respectively. The concentrations of alpha-lipoic acid in Pheroid gel and gel that diffused into the dermis were 23.62 ug/ml and 61.06 ug/ml respectively. Aqueous solubility and log D partition coefficient of alpha-lipoic acid were determined. Inspection of the log D value of -0.78 indicated that the compound was unfavourable to penetrate the skin, whereas the aqueous solubility of 8.602 mg/ml in PBS at a temperature of 32 °C indicated favourable penetration. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2010.
107

Formulation, in vitro release and transdermal diffusion of acyclovir and ketoconazole for skin conditions in HIV/AIDS patients / Gerda Alida Jacobs

Jacobs, Gerda Alida January 2009 (has links)
The aim of this in vitro study was to investigate the efficacy of the novel Pheroid™ technology system in a semi-solid dosage form, for the topical delivery of acyclovir (5% w/w), an anti-viral agent and ketoconazole (2% w/w) an anti-fungal agent. The human immununodeficiency virus (HIV) had an immense impact on the spectrum of diagnosis of cutaneous diseases since its first manifestation in the late 1970's (Yen-More et al., 2000:432). The skin is the most commonly affected organ in HIV infected individuals with skin manifestations present in up to 92% of HIV-positive patients. According to Ramdial (2000:113) the skin may also be the first or the only organ affected throughout the course of the HIV/AIDS disease. HIV/AIDS patients are more susceptible to infections due to their compromised immune systems (Durden & Elewski, 1997:200) and an exceptionally wide range of infectious skin manifestations presents in HIV/AIDS infected individuals, some of which are viral and fungal. Acyclovir is an anti-viral active against herpes simplex virus type 1 and type 2, varicella-zoster virus, Epstein-Barr virus and the cytomegalovirus (Hayden, 2001:1317). The anti-fungal drug, ketoconazole has activity against the majority of pathogenic fungi which include Candida species and Histoplasma capsulatum (Bennett, 2001:1301). It is appropriate to formulate a topical product containing both acyclovir and ketoconazole because viral and fungal cutaneous manifestations are regularly encountered in combination in HIV/AIDS infected individuals,. This combination topical product may be useful in the treatment of viral and fungal opportunistic skin manifestations. Curing these skin lesions may also assist to improve the state of mind and wellbeing of infected individuals. The skin, however, acts as a barrier against diffusion of substances through the underlying tissue. The main problem in transdermal and dermal delivery of actives is to overcome the stratum corneum, the skin's natural barrier (Menon, 2002:4). The Pheroid™ delivery system can promote the absorption and increase the efficacy of a selection of active ingredients in dermatological preparations (Grobler et al., 2008:284). The aim of this study was to formulate a stable semi-solid product containing Pheroid™ to determine whether Pheroid™ technology would enhance the flux and/or delivery of acyclovir and ketoconazole to the epidermal and dermal layers of the skin. In vitro studies and tape stripping were used to determine the effect that the Pheroid™ delivery system had on skin permeation of acyclovir and ketoconazole in semi-solid formulations. The formulae containing no Pheroid™ were used as a control against which the efficacy of the formulations containing Pheroid™ was measured. The stability of the formulated semi-solid products was examined over a period of 6 months according to the International Conference of Harmonisation (ICH) Tripartite Guidelines (2003) and the Medicines control council (MCC) of South Africa (2006). The formulated products were stored at three different temperatures. The stability tests included the assay of the actives and other attributes in the formulation, pH, viscosity, mass loss and particle size observation. These tests were conducted at 0, 1, 2, 3 and 6 months. The results demonstrated that the transdermal flux, epidermal and dermal penetration of acyclovir was enhanced by the Pheroid™ cream formulation. Ketoconazole's transdermal flux as well as delivery to the epidermal and dermal layers of the skin was improved by the Pheroid™ emulgel formula. The topical delivery of ketoconazole and acyclovir was thus enhanced by Pheroid™ technology. The Pheroid™ formulations, however, did not meet the requirements for stability according to the ICH and MCC. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2010.
108

Formulation, in-vitro release and transdermal diffusion of alpha-lipoic acid / Tizane Snyman

Snyman, Tizane January 2009 (has links)
Acne is a common disease characterised by follicular hyperkeratinisation, bacterial hipercolonisation as well as immune reactions and inflammation. In acne, reactive oxygen species (ROS) may be released from the damaged follicular walls, which could cause the advancement of inflammation in the pathogenesis of the disease. The topical application of antioxidants is a promising approach to support the endogenous antioxidant defence and avoid oxidative injury that may lead to acne. The skin provides a painless and patient-friendly approach for systemic drug administration. Transdermal drug delivery not only improves patient compliance, but also avoids the first-pass effect. The major hurdle to penetration of matter through the skin is provided by an outward layer of the skin, the stratum corneurm (SC). Overcoming this barrier safely and reversibly is a fundamental problem in the field of transdermal drug delivery. Alpha-lipoic acid was utilised as the cosmeceutical active and can be classified in a mixed category of compounds that lie between cosmetics and drugs. Alpha-lipoic acid and its reduced form, dihydrolipoic acid, have been described as the "universal antioxidants" because of their capacity to quench a number of free radicals in both aqueous and lipid environments, their metal-chelating properties and ability to restore other antioxidants from their inactive form. The Pheriod™ system is a new manner of drug delivery aimed at overcoming the barrier function of the skin. It consists of vesicular structures, the sizes of which vary from 200-440 nm. These vesicles, prepared from customised essential fatty acids, were found to advance the efficacy of topically administered compounds. The aim of this study was to determine whether the Pheroid™ delivery system would enhance the transdermal delivery of formulations containing alpha-lipoic acid to the target site by performing Franz cell diffusion studies over a 12 hour period, followed by tape-stripping experiments. The results of the formulations containing Pheroid™ were compared to those of the formulations without Pheroid™. Experimental determination of transdermal flux of the alpha-lipoic acid formulations revealed that Pheroid™ improved the transdermal delivery of alpha-lipoic acid. The average flux of Pheroid™ cream from 0 to 2 hours wass 58.01 ± 6.63 ug/cm2.h. The average flux of Pheroid™ gel from 4 to 12 hours was 22.18 ± 3.33 ug/cm2.h. Tape-stripping experiments proved that the concentrations of alpha-lipoic acid in Pheroid™ cream and cream that remained in the epidermis after application to the skin were 569.10 ug/ml and 764.93 ug/ml respectively. The concentrations of alpha-lipoic acid in Pheroid gel and gel that diffused into the dermis were 23.62 ug/ml and 61.06 ug/ml respectively. Aqueous solubility and log D partition coefficient of alpha-lipoic acid were determined. Inspection of the log D value of -0.78 indicated that the compound was unfavourable to penetrate the skin, whereas the aqueous solubility of 8.602 mg/ml in PBS at a temperature of 32 °C indicated favourable penetration. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2010.
109

Formulation, in vitro release and transdermal diffusion of acyclovir and ketoconazole for skin conditions in HIV/AIDS patients / Gerda Alida Jacobs

Jacobs, Gerda Alida January 2009 (has links)
The aim of this in vitro study was to investigate the efficacy of the novel Pheroid™ technology system in a semi-solid dosage form, for the topical delivery of acyclovir (5% w/w), an anti-viral agent and ketoconazole (2% w/w) an anti-fungal agent. The human immununodeficiency virus (HIV) had an immense impact on the spectrum of diagnosis of cutaneous diseases since its first manifestation in the late 1970's (Yen-More et al., 2000:432). The skin is the most commonly affected organ in HIV infected individuals with skin manifestations present in up to 92% of HIV-positive patients. According to Ramdial (2000:113) the skin may also be the first or the only organ affected throughout the course of the HIV/AIDS disease. HIV/AIDS patients are more susceptible to infections due to their compromised immune systems (Durden & Elewski, 1997:200) and an exceptionally wide range of infectious skin manifestations presents in HIV/AIDS infected individuals, some of which are viral and fungal. Acyclovir is an anti-viral active against herpes simplex virus type 1 and type 2, varicella-zoster virus, Epstein-Barr virus and the cytomegalovirus (Hayden, 2001:1317). The anti-fungal drug, ketoconazole has activity against the majority of pathogenic fungi which include Candida species and Histoplasma capsulatum (Bennett, 2001:1301). It is appropriate to formulate a topical product containing both acyclovir and ketoconazole because viral and fungal cutaneous manifestations are regularly encountered in combination in HIV/AIDS infected individuals,. This combination topical product may be useful in the treatment of viral and fungal opportunistic skin manifestations. Curing these skin lesions may also assist to improve the state of mind and wellbeing of infected individuals. The skin, however, acts as a barrier against diffusion of substances through the underlying tissue. The main problem in transdermal and dermal delivery of actives is to overcome the stratum corneum, the skin's natural barrier (Menon, 2002:4). The Pheroid™ delivery system can promote the absorption and increase the efficacy of a selection of active ingredients in dermatological preparations (Grobler et al., 2008:284). The aim of this study was to formulate a stable semi-solid product containing Pheroid™ to determine whether Pheroid™ technology would enhance the flux and/or delivery of acyclovir and ketoconazole to the epidermal and dermal layers of the skin. In vitro studies and tape stripping were used to determine the effect that the Pheroid™ delivery system had on skin permeation of acyclovir and ketoconazole in semi-solid formulations. The formulae containing no Pheroid™ were used as a control against which the efficacy of the formulations containing Pheroid™ was measured. The stability of the formulated semi-solid products was examined over a period of 6 months according to the International Conference of Harmonisation (ICH) Tripartite Guidelines (2003) and the Medicines control council (MCC) of South Africa (2006). The formulated products were stored at three different temperatures. The stability tests included the assay of the actives and other attributes in the formulation, pH, viscosity, mass loss and particle size observation. These tests were conducted at 0, 1, 2, 3 and 6 months. The results demonstrated that the transdermal flux, epidermal and dermal penetration of acyclovir was enhanced by the Pheroid™ cream formulation. Ketoconazole's transdermal flux as well as delivery to the epidermal and dermal layers of the skin was improved by the Pheroid™ emulgel formula. The topical delivery of ketoconazole and acyclovir was thus enhanced by Pheroid™ technology. The Pheroid™ formulations, however, did not meet the requirements for stability according to the ICH and MCC. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2010.
110

The critical factors of e-government adoption : an empirical study in the Saudi Arabia public sectors

Altameem, Torki Abdulaziz January 2007 (has links)
This thesis draws on electronic government (e-govemment) policy formulation, implementation and execution. IT has been enthused by the perceived lack of a model for e-government in Saudi Arabia public sectors. A model for e-government implementation is developed for Saudi Arabia. It examines critical factors that have impacts on e-government implementation in Saudi public sectors by collecting and analysing data in both quantitative and qualitative approaches, and further presenting an extensive review on literature. This exercise is significant, to avoid the pitfalls of imposing universal approaches to research and policy practices. The conclusions and recommendations of this research are significant for both practitioners, in providing guidelines for e-government implementation, and scholars, in suggesting further research in the new area of e-government.

Page generated in 0.1196 seconds