• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Facilitating four-dimensional quantitative analysis of aortic MRI for clinical use

Premraj, Senthil Kumar 01 May 2009 (has links)
Marfan Syndrome leads to the weakening of the thoracic aorta and ultimate rupture causing death of the patient. Current monitoring method involves measuring the diameter of the aorta near the heart. Our approach is to develop a new technology that will provide clinicians the ability to evaluate the size, shape and motion of the entire thoracic aorta using four-dimensional cardiac MRI. This project alters the existing research algorithms to provides an integrated application for processing the images and provides novel measurements about the aorta from a data set of 32 normal subjects and 38 patients with serial scans.
2

Four-Dimensional Imaging of Respiratory Motion in the Radiotherapy Treatment Room Using a Gantry Mounted Flat Panel Imaging Device

Maurer, Jacqueline January 2010 (has links)
<p>Imaging respiratory induced tumor motion in the radiation therapy treatment room could eliminate the necessity for large motion encompassing margins that result in excessive irradiation of healthy tissues. Currently available image guidance technologies are ill-suited for this task. Two-dimensional fluoroscopic images are acquired with sufficient speed to image respiratory motion. However, volume information is not present, and soft tissue structures are often not visible because a large volume is projected onto a single plane. Currently available volumetric imaging modalities are not acquired with sufficient speed to capture full motion trajectory information. Four-dimensional cone-beam computed tomography (4D CBCT) using a gantry mounted 2D flat panel imaging device has been proposed but has been limited by high doses, long scan times and severe under-sampling artifacts. The focus of the work completed in this thesis was to find ways to improve 4D imaging using a gantry mounted 2D kV imaging system. Specifically, the goals were to investigate methods for minimizing imaging dose and scan time while achieving consistent, controllable, high quality 4D images.</p><p>First, we introduced four-dimensional digital tomosynthesis (4D DTS) and characterized its potential for 3D motion analysis using a motion phantom. The motion phantom was programmed to exhibit motion profiles with various known amplitudes in all three dimensions and scanned using a 2D kV imaging system mounted on a linear accelerator. Two arcs of projection data centered about the anterior-posterior and lateral axes were used to reconstruct phase resolved DTS coronal and sagittal images. Respiratory signals were obtained by analyzing projection data, and these signals were used to derive phases for each of the projection images. Projection images were sorted according to phase, and DTS phase images were reconstructed for each phase bin. 4D DTS target location accuracies for peak inhalation and peak exhalation in all three dimensions were limited only by the 0.5 mm pixel resolution for all DTS scan angles. The average localization errors for all phases of an assymetric motion profile with a 2 cm peak-to-peak amplitude were 0.68, 0.67 and 1.85 mm for 60 <super> o <super/> 4D DTS, 360<super> o <super/> CBCT and 4DCT, respectively. Motion artifacts for 4D DTS were found to be substantially less than those seen in 4DCT, which is the current clinical standard in 4D imaging. </p><p>We then developed a comprehensive framework for relating patient respiratory parameters with acquisition and reconstruction parameters for slow gantry rotation 4D DTS and 4D CBCT imaging. This framework was validated and optimized with phantom and lung patient studies. The framework facilitates calculation of optimal frame rates and gantry rotation speeds based on patient specific respiratory parameters and required temporal resolution (task dependent). We also conducted lung patient studies to investigate required scan angles for 4D DTS and achievable dose and scan times for 4D DTS and 4D CBCT using the optimized framework. This explicit and comprehensive framework of relationships allowed us to demonstrate that under-sampling artifacts can be controlled, and 4D CBCT images can be acquired using lower doses than previously reported. We reconstructed 4D CBCT images of three patients with accumulated doses of 4.8 to 5.7 cGy. These doses are three times less than the doses used for the only previously reported 4D CBCT investigation that did not report images characterized by severe under-sampling artifacts. </p><p>We found that scan times for 200<super> o <super/> 4D CBCT imaging using acquisition sequences optimized for reduction of imaging dose and under-sampling artifacts were necessarily between 4 and 7 minutes (depending on patient respiration). The results from lung patient studies concluded that scan times could be reduced using 4D DTS. Patient 4D DTS studies demonstrated that tumor visibility for the lung patients we studied could be achieved using 30<super> o <super/> scan angles for coronal views. Scan times for those cases were between 41 and 50 seconds. Additional dose reductions were also demonstrated. Image doses were between 1.56 and 2.13 cGy. These doses are well below doses for standard CBCT scans. The techniques developed and reported in this thesis demonstrate how respiratory motion can be imaged in the radiotherapy treatment room using clinically feasible imaging doses and scan times.</p> / Dissertation
3

Investigation of Imaging Capabilities for Dual Cone-Beam Computed Tomography

Li, Hao January 2013 (has links)
<p>A bench-top dual cone-beam computed tomography (CBCT) system was developed consisting of two orthogonally placed 40x30 cm<super>2</super> flat-panel detectors and two conventional X-ray tubes with two individual high-voltage generators sharing the same rotational axis. The X-ray source to detector distance is 150 cm and X-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT (DCBCT) system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum and CT number linearity. The uniformity, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems.</p><p>Compared with single CBCT, the DCBCT presented: 1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125 and 150 kVp); 2) comparable or slightly better contrast to noise ratio (CNR) for low-contrast objects and comparable contrast for high-contrast objects; 3) comparable spatial resolution; 4) comparable CT number linearity with R<super>2</super> &#8805; 0.99 for all four tested energies; 5) lower noise power spectrum in magnitude. DCBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast.</p><p>One of the major challenges for clinical implementation of four-dimensional (4D) CBCT is the long scan time. To investigate the 4D imaging capabilities of the DCBCT system, motion phantom studies were conducted to validate the efficiency by comparing 4D images generated from 4D-DCBCT and 4D-CBCT. First, a simple sinusoidal profile was used to confirm the scan time reduction. Next, both irregular sinusoidal and patient-derived profiles were used to investigate the advantage of temporally correlated orthogonal projections due to a reduced scan time. Normalized mutual information (NMI) between 4D-DCBCT and 4D-CBCT was used for quantitative evaluation.</p><p>For the simple sinusoidal profile, the average NMI for ten phases between two single 4D-CBCTs was 0.336, indicating the maximum NMI that can be achieved for this study. The average NMIs between 4D-DCBCT and each single 4D-CBCT were 0.331 and 0.320. For both irregular sinusoidal and patient-derived profiles, 4D-DCBCT generated phase images with less motion blurring when compared with single 4D-CBCT.</p><p>For dual kV energy imaging, we acquired 80kVp projections and 150 kVp projections, with an additional 0.8 mm tin filtration. The virtual monochromatic (VM) technique was implemented, by first decomposing these projections into acrylic and aluminum basis material projections to synthesize VM projections, which were then used to reconstruct VM CBCTs. The effect of the VM CBCT on metal artifact reduction was evaluated with an in-house titanium-BB phantom. The optimal VM energy to maximize CNR for iodine contrast and minimize beam hardening in VM CBCT was determined using a water phantom containing two iodine concentrations. The linearly-mixed (LM) technique was implemented by linearly combining the low- (80kVp) and high-energy (150kVp) CBCTs. The dose partitioning between low- and high-energy CBCTs was varied (20%, 40%, 60% and 80% for low-energy) while keeping total dose approximately equal to single-energy CBCTs, measured using an ion chamber. Noise levels and CNRs for four tissue types were investigated for dual-energy LM CBCTs in comparison with single-energy CBCTs at 80, 100, 125 and 150kVp.</p><p>The VM technique showed a substantial reduction of metal artifacts at 100 keV with a 40% reduction in the background standard deviation compared with a 125 kVp single-energy scan of equal dose. The VM energy to maximize CNR for both iodine concentrations and minimize beam hardening in the metal-free object was 50 keV and 60 keV, respectively. The difference in average noise levels measured in the phantom background was 1.2% for dual-energy LM CBCTs and equivalent-dose single-energy CBCTs. CNR values in the LM CBCTs of any dose partitioning were better than those of 150 kVp single-energy CBCTs. The average CNRs for four tissue types with 80% dose fraction at low-energy showed 9.0% and 4.1% improvement relative to 100 kVp and 125 kVp single-energy CBCTs, respectively. CNRs for low contrast objects improved as dose partitioning was more heavily weighted towards low-energy (80kVp) for LM CBCTs.</p><p>For application of the dual-energy technique in the kilovoltage (kV) and megavoltage (MV) range, we acquired both MV projections (from gantry angle of 0° to 100°) and kV projections (90° to 200°) with the current orthogonal kV/MV imaging hardware equipped in modern linear accelerators, as gantry rotated a total of 110°. A selected range of overlap projections between 90° to 100° were then decomposed into two material projections using experimentally determined parameters from orthogonally stacked aluminum and acrylic step-wedges. Given attenuation coefficients of aluminum and acrylic at a predetermined energy, one set of VM projections could be synthesized from two corresponding sets of decomposed projections. Two linear functions were generated using projection information at overlap angles to convert kV and MV projections at non-overlap angles to approximate VM projections for CBCT reconstruction. The CNRs were calculated for different inserts in VM CBCTs of a CatPhan phantom with various selected energies and compared with those in kV and MV CBCTs. The effect of overlap projection number on CNR was evaluated. Additionally, the effect of beam orientation was studied by scanning the CatPhan sandwiched with two 5 cm solid-water phantoms on both lateral sides and an electronic density phantom with two metal bolt inserts.</p><p>Proper selection of VM energy (30keV and 40keV for low-density polyethylene (LDPE), polymethylpentene (PMP), 2MeV for Delrin) provided comparable or even better CNR results as compared with kV or MV CBCT. An increased number of overlap between kV and MV projections demonstrated only marginal improvements of CNR for different inserts (with the exception of LDPE) and therefore one projection overlap was found to be sufficient for the CatPhan study. It was also evident that the optimal CBCT image quality was achieved when MV beams penetrated through the heavy attenuation direction of the object. </p><p>In conclusion, the performance of a bench-top DCBCT imaging system has been characterized and is comparable to that of a single CBCT. The 4D-DCBCT provides an efficient 4D imaging technique for motion management. The scan time is reduced by approximately a factor of two. The temporally correlated orthogonal projections improved the image blur across 4D phase images. Dual-energy CBCT imaging techniques were implemented to synthesize VM CBCT and LM CBCTs. VM CBCT was effective at achieving metal artifact reduction. Depending on the dose-partitioning scheme, LM CBCT demonstrated the potential to improve CNR for low contrast objects compared with single-energy CBCT acquired with equivalent dose. A novel technique was developed to generate VM CBCTs from kV/MV projections. This technique has the potential to improve CNR at selected VM energies and to suppress artifacts at appropriate beam orientations.</p> / Dissertation

Page generated in 0.0767 seconds