• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparative study of the combustion characteristics of a compression ignition engine fuelled on diesel and dimethyl ether

Lopes, Paulo Miguel Pereira 28 February 2007 (has links)
Student Number : 9707408V - MSc(Eng) research report - School of Mechanical, Industrial and Aeronautical Engineering - Faculty of Engineering and the Built Environment / This research is an investigation into the performance and combustion characteristics of a two-cylinder, four-stroke compression ignition engine fuelled on diesel and then on dimethyl ether (DME). Baseline tests were performed using diesel. The tests were then repeated for dimethyl ether fuelling. All DME tests were performed at an injection opening pressure of 210 bar, as recommended for diesel fuelling. The tests were all carried out at constant torque with incremental increases in speed and an improved method of measuring the DME flow rate was devised. It was found that the engine’s performance characteristics were very similar, regardless of whether the engine was fuelled on diesel or DME. Brake power, indicated power and cylinder pressure, during the highest loading condition of 55 Nm, were virtually identical for diesel and DME fuelling, with the most significant finding being that the engine was more efficient when fuelled on DME than when fuelled with diesel. Another interesting finding was that the energy release of diesel decreases with increasing load, whilst the energy release of DME increases with increasing load. At the highest loading condition of 55 Nm, the energy release of DME was approximately 210 joules higher than that of diesel. This investigation concluded that DME may definitely be a suitable substitute fuel for diesel.

Page generated in 0.1179 seconds