• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Option Pricing using Fourier Space Time-stepping Framework

Surkov, Vladimir 03 March 2010 (has links)
This thesis develops a generic framework based on the Fourier transform for pricing and hedging of various options in equity, commodity, currency, and insurance markets. The pricing problem can be reduced to solving a partial integro-differential equation (PIDE). The Fourier Space Time-stepping (FST) framework developed in this thesis circumvents the problems associated with the existing finite difference methods by utilizing the Fourier transform to solve the PIDE. The FST framework-based methods are generic, highly efficient and rapidly convergent. The Fourier transform can be applied to the pricing PIDE to obtain a linear system of ordinary differential equations that can be solved explicitly. Solving the PIDE in Fourier space allows for the integral term to be handled efficiently and avoids the asymmetrical treatment of diffusion and integral terms, common in the finite difference schemes found in the literature. For path-independent options, prices can be obtained for a range of stock prices in one iteration of the algorithm. For exotic, path-dependent options, a time-stepping methodology is developed to handle barriers, free boundaries, and exercise policies. The thesis includes applications of the FST framework-based methods to a wide range of option pricing problems. Pricing of single- and multi-asset, European and path-dependent options under independent-increment exponential Levy stock price models, common in equity and insurance markets, can be done efficiently via the cornerstone FST method. Mean-reverting Levy spot price models, common in commodity markets, are handled by introducing a frequency transformation, which can be readily computed via scaling of the option value function. Generating stochastic volatility, to match the long-term equity options market data, and stochastic skew, observed in currency markets, is addressed by introducing a non-stationary extension of multi-dimensional Levy processes using regime-switching. Finally, codependent jumps in multi-asset models are introduced through copulas. The FST methods are computationally efficient, running in O(MN^d log_2 N) time with M time steps and N space points in each dimension on a d-dimensional grid. The methods achieve second-order convergence in space; for American options, a penalty method is used to attain second-order convergence in time. Furthermore, graphics processing units are utilized to further reduce the computational time of FST methods.
2

Option Pricing using Fourier Space Time-stepping Framework

Surkov, Vladimir 03 March 2010 (has links)
This thesis develops a generic framework based on the Fourier transform for pricing and hedging of various options in equity, commodity, currency, and insurance markets. The pricing problem can be reduced to solving a partial integro-differential equation (PIDE). The Fourier Space Time-stepping (FST) framework developed in this thesis circumvents the problems associated with the existing finite difference methods by utilizing the Fourier transform to solve the PIDE. The FST framework-based methods are generic, highly efficient and rapidly convergent. The Fourier transform can be applied to the pricing PIDE to obtain a linear system of ordinary differential equations that can be solved explicitly. Solving the PIDE in Fourier space allows for the integral term to be handled efficiently and avoids the asymmetrical treatment of diffusion and integral terms, common in the finite difference schemes found in the literature. For path-independent options, prices can be obtained for a range of stock prices in one iteration of the algorithm. For exotic, path-dependent options, a time-stepping methodology is developed to handle barriers, free boundaries, and exercise policies. The thesis includes applications of the FST framework-based methods to a wide range of option pricing problems. Pricing of single- and multi-asset, European and path-dependent options under independent-increment exponential Levy stock price models, common in equity and insurance markets, can be done efficiently via the cornerstone FST method. Mean-reverting Levy spot price models, common in commodity markets, are handled by introducing a frequency transformation, which can be readily computed via scaling of the option value function. Generating stochastic volatility, to match the long-term equity options market data, and stochastic skew, observed in currency markets, is addressed by introducing a non-stationary extension of multi-dimensional Levy processes using regime-switching. Finally, codependent jumps in multi-asset models are introduced through copulas. The FST methods are computationally efficient, running in O(MN^d log_2 N) time with M time steps and N space points in each dimension on a d-dimensional grid. The methods achieve second-order convergence in space; for American options, a penalty method is used to attain second-order convergence in time. Furthermore, graphics processing units are utilized to further reduce the computational time of FST methods.
3

Elasticity in Microstructure Sensitive Design Through the use of Hill Bounds

Henrie, Benjamin L. 31 May 2002 (has links) (PDF)
In engineering, materials are often assumed to be homogeneous and isotropic; in actuality, material properties do change with sample direction and location. This variation is due to the anisotropy of the individual grains and their spatial distribution in the material. Currently there is a lack of communication between the design engineer, material scientist, and processor for solving multi-objective/constrained designs. If communication existed between these groups then materials could be designed for applications, instead of the reverse. Microstructure sensitive design introduces a common language, a spectral representation, where both design properties and microstructures are expressed. Using Hill bounds, effective elastic properties are expressed within the spectral representation. For the elastic properties, two FCC materials, copper and nickel, were chosen for computation and to demonstrate how symmetry enters into the methodology. This spectral representation renders properties as hyper-surfaces that translate through a multi-dimensional Fourier space depending on the property value of the hyper-surface. Property closures are generated by condensing the information contained within the multi-dimensional Fourier space into a 2-D representation. This compaction of information is beneficial for a quick determination of property limits for a particular alloy system. The design engineer can now dictate the critical design properties and receive sets of microstructures that satisfy the design objectives.

Page generated in 0.0633 seconds