• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preliminary Design of Tall Buildings

Paulino, Madison Radhames 23 April 2010 (has links)
Techniques for preliminary analysis of various tall building systems subjected to lateral loads have been studied herein. Three computer programs written in Matlab® graphical user interface language for use on any personal computer are presented. Two of these programs incorporate interactive graphics. A program called Wall_Frame_2D is introduced for two-dimensional analysis of shear wall-frame interactive structures, using the shear-flexural cantilever analogy. The rigid outrigger approach was utilized to develop a program called Outrigger Program to analyze multi-outrigger braced tall buildings. In addition, a program called Frame Tube was developed which allows analysis of single and quad-bundled framed tube structures. The tube grids are replaced with an equivalent orthotropic plate, and the governing differential equations are solved in closed form. Results for lateral deflections, rotations, and moment, shear, and torque distributions within the various resisting elements are compared against other preliminary and "exact" matrix analysis methods for several examples. SAP2000 was used to obtain "exact" results. The approximate analyses are found to give reasonable results and a fairly good indication of the behavior of the actual structure. These programs are proposed for inclusion in a knowledge-based approach to preliminary tall building design. The tall building design process is outlined and criteria are given for the incorporation of these "Resource Level Knowledge Modules" into an integrated tall building design system.
2

Stability Analysis of Frame Tube Building

Urs, Amit 22 January 2003 (has links)
The frame tube buildings have been the most efficient structural system used for building which is in the range of 40-100storey. The soaring heights and the demanding structural efficiency have led to them having smaller reserves of stiffness and consequently stability. In this thesis a Non-linear analysis and stability check of frame-tube building is done. Nonlinear analysis offers several options for addressing problems of nonlinearity and in this work focus is on Geometric Non-linearity. The main sources can be identified as P-Æ’´ effect of gravity loading acting on a transversely displaced structure due to lateral loading and can also be due to member imperfections, such as member camber and out of plumb erection of the frame. During analysis the element response keep continuously changing as a function of the applied load so simple step computing methods have been employed instead of direct analytical methods. The problem here is dealt in a piece wise linear way and solved. In this thesis a program using the matrix approach has been developed. The program developed can calculate the buckling load and can do Linear and Non-linear analysis using the Mat-lab as the computing platform. Numerical results obtained from the program have been compared with the Finite Element software Mastan2. The comparative solutions presented later on in the report clearly prove the accuracy of the program and go on to show, how exploiting simple matrix equation can help solve the most complex structures in fraction of seconds. The program is modular in structure. It provides opportunity for user to make minor manipulation or can append his own module to make it work for his specific needs and will get reliable results.

Page generated in 0.0621 seconds