• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eigenvalue analysis of amorphous solids consisting of frictional grains under athermal quasistatic shear / 非熱的準静的剪断下での摩擦のある粒子からなるアモルファス固体の固有値解析

Ishima, Daisuke 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24397号 / 理博第4896号 / 新制||理||1699(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 早川 尚男, 教授 佐々 真一, 准教授 藤 定義 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
2

Thermomechanical and Vibration Analysis of Stiffened Unitized Structures and Threaded Fasteners

Devarajan, Balakrishnan 01 February 2019 (has links)
This dissertation discusses the thermomechanical analyses performed on threaded fasteners and curvilinearly stiffened composite panels with internal cutouts. The former problem was analyzed using a global/local approach using the commercial finite element software ANSYS while a fully functional code using isogeometric analysis was developed from scratch for the latter. For the threaded fasteners, a global simplified 3D model is built to evaluate the deformation of the structure. A second local model reproducing accurately the threads of the fasteners is used for the accurate assessment of the stresses in the vicinity of the fasteners. The isogeometric analysis code, capable of performing static, buckling and vibration analysis on stiffened composite plates with cutouts using single patch, multiple patches and level set methods is then discussed. A novel way to achieve displacement compatibility between the panel and stiffeners interfaces is introduced. An easy way of modeling plates with complicated cutouts by using edge curves and generating a ruled NURBS surface between them is described. Influence on the critical thermal buckling load and the fundamental mode of vibration due to the presence of circular, elliptical and complicated cutouts is also investigated. Results of parametric studies are presented which show the influence of ply orientation, size and orientation of the cutout, and the position and profile of the curvilinear stiffener. The numerical examples show high reliability and efficiency when compared with other published solutions and those obtained using ABAQUS, a commercial software. / PHD / Aircraft in flight are subjected to different loads due to maneuvers and gust; there external forces cause internal loads and depend on the location of the panel in the aircraft. The internal loads, may result in the buckling of the panel. Hence, there is a need for studying structural efficiency and develop strong and stiff lightweight structures. Stiffened composite panels is a technology capable of addressing these needs. However, when used in space vehicles moving at hypersonic speeds, such structures experience significant temperature rise in a very short time resulting from the aerodynamic heating due to friction between the vehicle surface and the atmosphere. Such phenomena is more prominent during reentry and launch processes. Hence, it is really important to consider thermal effects while designing and analyzing such structures. Composite stiffened panels have many advantages like small manufacturing cost, high stability, great energy absorption, superior damage tolerance etc. One of the main failure modes for stiffened composite panels is thermal buckling. An extensive literature review on thermal buckling of stiffened composite panels was conducted in this dissertation. Thermal buckling and vibration analysis as well as a parametric study of a stiffened composite panel with internal cutouts was conducted, and verified using ABAQUS, a Finite Element Software.
3

Stability Analysis of Frame Tube Building

Urs, Amit 22 January 2003 (has links)
The frame tube buildings have been the most efficient structural system used for building which is in the range of 40-100storey. The soaring heights and the demanding structural efficiency have led to them having smaller reserves of stiffness and consequently stability. In this thesis a Non-linear analysis and stability check of frame-tube building is done. Nonlinear analysis offers several options for addressing problems of nonlinearity and in this work focus is on Geometric Non-linearity. The main sources can be identified as P-Æ’´ effect of gravity loading acting on a transversely displaced structure due to lateral loading and can also be due to member imperfections, such as member camber and out of plumb erection of the frame. During analysis the element response keep continuously changing as a function of the applied load so simple step computing methods have been employed instead of direct analytical methods. The problem here is dealt in a piece wise linear way and solved. In this thesis a program using the matrix approach has been developed. The program developed can calculate the buckling load and can do Linear and Non-linear analysis using the Mat-lab as the computing platform. Numerical results obtained from the program have been compared with the Finite Element software Mastan2. The comparative solutions presented later on in the report clearly prove the accuracy of the program and go on to show, how exploiting simple matrix equation can help solve the most complex structures in fraction of seconds. The program is modular in structure. It provides opportunity for user to make minor manipulation or can append his own module to make it work for his specific needs and will get reliable results.
4

Application and evaluation of local and global analysis for dynamic models of infectious disease spread

Zhang, Qian 17 December 2008
In this thesis, we applied local analysis tools (eigenvalue and eigenvalue elasticity analysis, global function elasticity/sensitivity analysis), and global analysis tools (deriving the location and stability of fixed points) to both aggregate and individual-level dynamic models of infectious diseases. We sought to use these methods to gain insight into the models and to evaluate the use of these methods to study their short-term and long-term dynamics and the influences of arameters on the models.<p> We found that eigenvalues are effective for understanding short-term behaviours of a nonlinear system, but less effective in providing insights of the long-term impacts of a parameter change on its behaviours. In term of disease control, local changes of behaviours, yielded from the changes of parameters based on eigenvalue elasticity, are able to alter behaviours in a short-term, especially in the period of a disease outbreak. While eigenvalue elasticity analysis can be helpful for understanding the impact of parameter changes for simple aggregate models, such analyses prove unwieldy and complicated, particularly for models with large number of state variables; and easily fall prey to eigenvalue multiplicity problems for large individual-based models, and istracting artifacts associated with small denominators. In response to these concerns, we introduced other local methods (global function elasticity/sensitivity analyses) that capture many of the advantages of eigenvalue elasticity methods with much greater simplicity. Unfortunately, parameter changes guided by these local analysis techniques are often insufficient to alter behaviours in the longer-term, such as when system behaviours approach stable endemic equilibria. By contrast, the global analytic tools, such as fixed point location and stability analysis, are effective for providing insights into the global behaviours of disease spread in the long-term, as well as their dependence on parameters. Using all of the above analysis as a toolset, we gained some possible insights into combination of local and global approaches. Choice of applying local or global analysis tools to infectious disease models is dependent on the specific target of policy makers as well as model type.
5

Application and evaluation of local and global analysis for dynamic models of infectious disease spread

Zhang, Qian 17 December 2008 (has links)
In this thesis, we applied local analysis tools (eigenvalue and eigenvalue elasticity analysis, global function elasticity/sensitivity analysis), and global analysis tools (deriving the location and stability of fixed points) to both aggregate and individual-level dynamic models of infectious diseases. We sought to use these methods to gain insight into the models and to evaluate the use of these methods to study their short-term and long-term dynamics and the influences of arameters on the models.<p> We found that eigenvalues are effective for understanding short-term behaviours of a nonlinear system, but less effective in providing insights of the long-term impacts of a parameter change on its behaviours. In term of disease control, local changes of behaviours, yielded from the changes of parameters based on eigenvalue elasticity, are able to alter behaviours in a short-term, especially in the period of a disease outbreak. While eigenvalue elasticity analysis can be helpful for understanding the impact of parameter changes for simple aggregate models, such analyses prove unwieldy and complicated, particularly for models with large number of state variables; and easily fall prey to eigenvalue multiplicity problems for large individual-based models, and istracting artifacts associated with small denominators. In response to these concerns, we introduced other local methods (global function elasticity/sensitivity analyses) that capture many of the advantages of eigenvalue elasticity methods with much greater simplicity. Unfortunately, parameter changes guided by these local analysis techniques are often insufficient to alter behaviours in the longer-term, such as when system behaviours approach stable endemic equilibria. By contrast, the global analytic tools, such as fixed point location and stability analysis, are effective for providing insights into the global behaviours of disease spread in the long-term, as well as their dependence on parameters. Using all of the above analysis as a toolset, we gained some possible insights into combination of local and global approaches. Choice of applying local or global analysis tools to infectious disease models is dependent on the specific target of policy makers as well as model type.
6

Industrial and office wideband MIMO channel performance

Nair, Lakshmi Ravindran 26 November 2009 (has links)
The aim of this dissertation is to characterize the MIMO channel in two very distinct indoor scenarios: an office building and an industrial environment. The study investigates the use of single- and dual-polarized antenna MIMO systems, and attempts to model the channel using well-known analytical models. The suitability of MIMO architectures employing either single or dual-polarization antennas is presented, with the purpose of identifying not only which architecture provides better average capacity performance, but also which is more robust for avoiding low channel rank. A measurement campaign employing dual-polarized 8×8 patch arrays at 2.4 GHz and 5.2 GHz is analyzed. For both environments the performance of three 4×4 subsystems (dual-polarized, vertical-polarized and horizontal-polarized) are compared in terms of the average capacities attained by these systems and their eigenvalue distributions. Average capacities are found to be only marginally different, indicating little advantage of dual-polarized elements for average performance. However, an eigenvalue analysis indicates that the dual-polarized system is most robust for full-rank MIMO communications, by providing orthogonal channels with more equal gain. The analysis of the analytical models shows that the Kronecker and Weichselberger models underestimate the measured data. Kronecker models are known to perform poorly for large antenna sizes and the performance of the Weichselberger model can be attributed to certain parts of the channel not fading enough. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
7

Step by step eigenvalue analysis with EMTP discrete time solutions

Hollman, Jorge 11 1900 (has links)
The present work introduces a methodology to obtain a discrete time state space representation of an electrical network using the nodal [G] matrix of the Electromagnetic Transients Program (EMTP) solution. This is the first time the connection between the EMTP nodal analysis solution and a corresponding state-space formulation is presented. Compared to conventional state space solutions, the nodal EMTP solution is computationally much more efficient. Compared to the phasor solutions used in transient stability analysis, the proposed approach captures a much wider range of eigenvalues and system operating states. A fundamental advantage of extracting the system eigenvalues directly from the EMTP solution is the ability of the EMTP to follow the characteristics of nonlinearities. The system's trajectory can be accurately traced and the calculated eigenvalues and eigenvectors correctly represent the system's instantaneous dynamics. In addition, the algorithm can be used as a tool to identify network partitioning subsystems suitable for real-time hybrid power system simulator environments, including the implementation of multi-time scale solutions. The proposed technique can be implemented as an extension to any EMTP-based simulator. Within our UBC research group, it is aimed at extending the capabilities of our real-time PC-cluster Object Virtual Network Integrator (OVNI) simulator.
8

Step by step eigenvalue analysis with EMTP discrete time solutions

Hollman, Jorge 11 1900 (has links)
The present work introduces a methodology to obtain a discrete time state space representation of an electrical network using the nodal [G] matrix of the Electromagnetic Transients Program (EMTP) solution. This is the first time the connection between the EMTP nodal analysis solution and a corresponding state-space formulation is presented. Compared to conventional state space solutions, the nodal EMTP solution is computationally much more efficient. Compared to the phasor solutions used in transient stability analysis, the proposed approach captures a much wider range of eigenvalues and system operating states. A fundamental advantage of extracting the system eigenvalues directly from the EMTP solution is the ability of the EMTP to follow the characteristics of nonlinearities. The system's trajectory can be accurately traced and the calculated eigenvalues and eigenvectors correctly represent the system's instantaneous dynamics. In addition, the algorithm can be used as a tool to identify network partitioning subsystems suitable for real-time hybrid power system simulator environments, including the implementation of multi-time scale solutions. The proposed technique can be implemented as an extension to any EMTP-based simulator. Within our UBC research group, it is aimed at extending the capabilities of our real-time PC-cluster Object Virtual Network Integrator (OVNI) simulator.
9

Step by step eigenvalue analysis with EMTP discrete time solutions

Hollman, Jorge 11 1900 (has links)
The present work introduces a methodology to obtain a discrete time state space representation of an electrical network using the nodal [G] matrix of the Electromagnetic Transients Program (EMTP) solution. This is the first time the connection between the EMTP nodal analysis solution and a corresponding state-space formulation is presented. Compared to conventional state space solutions, the nodal EMTP solution is computationally much more efficient. Compared to the phasor solutions used in transient stability analysis, the proposed approach captures a much wider range of eigenvalues and system operating states. A fundamental advantage of extracting the system eigenvalues directly from the EMTP solution is the ability of the EMTP to follow the characteristics of nonlinearities. The system's trajectory can be accurately traced and the calculated eigenvalues and eigenvectors correctly represent the system's instantaneous dynamics. In addition, the algorithm can be used as a tool to identify network partitioning subsystems suitable for real-time hybrid power system simulator environments, including the implementation of multi-time scale solutions. The proposed technique can be implemented as an extension to any EMTP-based simulator. Within our UBC research group, it is aimed at extending the capabilities of our real-time PC-cluster Object Virtual Network Integrator (OVNI) simulator. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
10

Soil-Structure Interaction of Pile Groups for High-Speed Railway Bridges

Strand, Tommy, Severin, Johannes January 2018 (has links)
No description available.

Page generated in 0.0839 seconds