• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Structural Properties and An Improved Bound for the Number Distinct Squares in a Strings

Thierry, Adrien January 2016 (has links)
Combinatorics on words explore words – often called strings in the com- puter science community, or monoids in mathematics – and their structural properties. One of the most studied question deals with repetitions which are a form of redundancy. The thesis focuses on estimating the maximum number of distinct squares in a string of length n. Our approach is to study the combinatorial properties of these overlapping structures, nested systems, and obtain insights into the intricate patterns that squares create. Determin- ing the maximum number of repetitions in a string is of interest in different fields such as biology and computer science. For example, the question arrises when one tries to bound the number of repetitions in a gene or in a computer file to be data compressed. Specific strings containing many repetitions are often of interest for additional combinatorial properties. After a brief review of earlier results and an introduction to the question of bounding the maxi- mum number of distinct squares, we present the combinatorial insights and techniques used to obtain the main result of the thesis: a strengthening of the universal upper bound obtained by Fraenkel and Simpson in 1998. / Thesis / Doctor of Philosophy (PhD)
2

The Frobenius Problem in a Free Monoid

Xu, Zhi January 2009 (has links)
Given positive integers c1,c2,...,ck with gcd(c1,c2,...,ck) = 1, the Frobenius problem (FP) is to compute the largest integer g(c1,c2,...,ck) that cannot be written as a non-negative integer linear combination of c1,c2,...,ck. The Frobenius problem in a free monoid (FPFM) is a non-commutative generalization of the Frobenius problem. Given words x1,x2,...,xk such that there are only finitely many words that cannot be written as concatenations of words in {x1,x2,...,xk}, the FPFM is to find the longest such words. Unlike the FP, where the upper bound g(c1,c2,...,ck)≤max 1≤i≤k ci2 is quadratic, the upper bound on the length of the longest words in the FPFM can be exponential in certain measures and some of the exponential upper bounds are tight. For the 2FPFM, where the given words over Σ are of only two distinct lengths m and n with 1<m<n, the length of the longest omitted words is ≤g(m, m|Σ|n-m + n - m). In Chapter 1, I give the definition of the FP in integers and summarize some of the interesting properties of the FP. In Chapter 2, I give the definition of the FPFM and discuss some general properties of the FPFM. Then I mainly focus on the 2FPFM. I discuss the 2FPFM from different points of view and present two equivalent problems, one of which is about combinatorics on words and the other is about the word graph. In Chapter 3, I discuss some variations on the FPFM and related problems, including input in other forms, bases with constant size, the case of infinite words, the case of concatenation with overlap, and the generalization of the local postage-stamp problem in a free monoid. In Chapter 4, I present the construction of some essential examples to complement the theory of the 2FPFM discussed in Chapter 2. The theory and examples of the 2FPFM are the main contribution of the thesis. In Chapter 5, I discuss the algorithms for and computational complexity of the FPFM and related problems. In the last chapter, I summarize the main results and list some open problems. Part of my work in the thesis has appeared in the papers.
3

The Frobenius Problem in a Free Monoid

Xu, Zhi January 2009 (has links)
Given positive integers c1,c2,...,ck with gcd(c1,c2,...,ck) = 1, the Frobenius problem (FP) is to compute the largest integer g(c1,c2,...,ck) that cannot be written as a non-negative integer linear combination of c1,c2,...,ck. The Frobenius problem in a free monoid (FPFM) is a non-commutative generalization of the Frobenius problem. Given words x1,x2,...,xk such that there are only finitely many words that cannot be written as concatenations of words in {x1,x2,...,xk}, the FPFM is to find the longest such words. Unlike the FP, where the upper bound g(c1,c2,...,ck)≤max 1≤i≤k ci2 is quadratic, the upper bound on the length of the longest words in the FPFM can be exponential in certain measures and some of the exponential upper bounds are tight. For the 2FPFM, where the given words over Σ are of only two distinct lengths m and n with 1<m<n, the length of the longest omitted words is ≤g(m, m|Σ|n-m + n - m). In Chapter 1, I give the definition of the FP in integers and summarize some of the interesting properties of the FP. In Chapter 2, I give the definition of the FPFM and discuss some general properties of the FPFM. Then I mainly focus on the 2FPFM. I discuss the 2FPFM from different points of view and present two equivalent problems, one of which is about combinatorics on words and the other is about the word graph. In Chapter 3, I discuss some variations on the FPFM and related problems, including input in other forms, bases with constant size, the case of infinite words, the case of concatenation with overlap, and the generalization of the local postage-stamp problem in a free monoid. In Chapter 4, I present the construction of some essential examples to complement the theory of the 2FPFM discussed in Chapter 2. The theory and examples of the 2FPFM are the main contribution of the thesis. In Chapter 5, I discuss the algorithms for and computational complexity of the FPFM and related problems. In the last chapter, I summarize the main results and list some open problems. Part of my work in the thesis has appeared in the papers.

Page generated in 0.0397 seconds