• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Canadian unconfined aggregate freeze-thaw tests for identifying nondurable aggregates.

Mummaneni, Santosh Kumar January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / Concrete is most widely used material in construction industry, which is made up of cement, water and aggregates as its major ingredients. Aggregates contribute to 60 to 75 % of the total volume of concrete. The aggregates play a key role in the concrete durability. The U.S Midwest has many aggregates that can show distress in the field under freezing and thawing conditions. The objective of this research was to determine if the Test Method for the Resistance of Unconfined Coarse Aggregate to Freezing and Thawing, method CSA A23.2-24A, could be used to differentiate good from poor performing aggregates in concrete. In this study fifty one KDOT aggregates (including twelve ledge and thirty nine production samples) were tested for freeze thaw resistance using CSA A23.2-24A test method and were compared to the results of the standard KDOT aggregate qualification tests. In addition to performing the CSA test method using a 3% sodium chloride solution, a subset of the aggregates were tested using either a 3% magnesium chloride or calcium chloride solution to determine the effects of the salt type on the aggregate performance. No correlation was found between the CSA A23.2-24A test method results and the standard KDOT aggregate qualification tests. The results also indicated that the mass loss in the CSA A23.2-24A was similar for the aggregate sizes tested. The use of alternate salt solutions like MgCl2 and CaCl2 resulted in increased freeze thaw mass loss in limestone aggregates.
2

Evaluation of Laboratory Durability Tests for Stabilized Aggregate Base Materials

Roper, Matthew B. 19 May 2007 (has links) (PDF)
The Portland Cement Association commissioned a research project at Brigham Young University to compare selected laboratory durability tests available for assessing stabilized aggregate base materials. The laboratory research associated with this project involved two granular base materials, three stabilizers at three concentration levels each, and three durability tests in a full-factorial experimental design. The granular base materials consisted of an aggregate-reclaimed asphalt pavement blend obtained from Interstate 84 (I-84) and a crushed limestone obtained from U.S. Highway 91 (US-91), while the three stabilizer types included Class C fly ash, lime-fly ash, and Type I/II Portland cement. Specimens were tested for durability using the freeze-thaw test, the vacuum saturation test, and the tube suction test. Analyses of the test results indicated that the unconfined compressive strength (UCS) and retained UCS were higher for specimens tested in freeze-thaw cycling than the corresponding values associated with vacuum saturation testing. This observation suggests that the vacuum saturation test is more severe than the freeze-thaw test for materials similar to those evaluated in this research. The analyses also indicated that the I-84 material retained more strength during freeze-thaw cycling and vacuum saturation and exhibited lower final dielectric values during tube suction testing than the US-91 material. Although the I-84 material performed better than the US-91 material, the I-84 material required higher stabilizer concentrations to reach the target 7-day UCS values specified in this research. After freeze-thaw testing, the Class C fly-treated specimens were significantly stronger than both lime-fly ash- and cement-treated specimens. In the vacuum saturation test, none of the three stabilizer types were significantly different from each other with respect to either UCS or retained UCS. Dielectric values measured during tube suction testing were lowest for cement-treated specimens, indicating that cement performed better than other stabilizers in reducing the moisture/frost susceptibility of the treated materials. The results also show that, as the stabilizer concentration level increased from low to high, specimens performed better in nearly all cases. A strong correlation was identified between UCS after the freeze-thaw test and UCS after the vacuum saturation test, while very weak correlations were observed between the final dielectric value after tube suction testing and all other response variables. Differences in variability between test results were determined to be statistically insignificant. Engineers interested in specifying a comparatively severe laboratory durability test should consider vacuum saturation testing for specimens treated with stabilizers similar to those evaluated in this research. The vacuum saturation test is superior to both the freeze-thaw and tube suction tests because of the shorter duration and lack of a need for daily specimen monitoring. Although the Class C fly ash used in this research performed well, further investigation of various sources of Class C fly ash is recommended because of the variability inherent in that material. Similar research should be performed on subgrade soils, which are also routinely stabilized in pavement construction. Research related to long-term field performance of stabilized materials should be conducted to develop appropriate thresholds for laboratory UCS values in conjunction with vacuum saturation testing.

Page generated in 0.0495 seconds