• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advanced Models for Sliding Seismic Isolation and Applications for Typical Multi-Span Highway Bridges

Eroz, Murat 14 November 2007 (has links)
The large number of bridge collapses that have occurred in recent earthquakes has exposed the vulnerabilities in existing bridges. One of the emerging tools for protecting bridges from the damaging effects of earthquakes is the use of isolation systems. Seismic isolation is achieved via inserting flexible isolator elements into the bridge that shift the vibration period and increase energy dissipation. To date, the structural performance of bridges incorporating sliding seismic isolation is not well-understood, in part due to the lack of adequate models that can account for the complex behavior of the isolators. This study investigates and makes recommendations on the structural performance of bridges utilizing sliding type seismic isolators, based on the development of state-of-the-art analytical models. Unlike previous models, these models can account simultaneously for the variation in the normal force and friction coefficient, large deformation effects, and the coupling of the vertical and horizontal response during motion. The intention is to provide support for seismic risk mitigation and insight for the analysis and design of seismically isolated bridges by quantifying response characteristics. The level of accuracy required for isolator analytical models used in typical highway bridges are assessed. The comparative viability of the two main isolator types (i.e. sliding and elastomeric) for bridges is investigated. The influence of bridge and sliding isolator design parameters on the system s seismic response is illustrated.
2

Application of Base Isolation Systems to Reinforced Concrete Frame Buildings

Han, Mengyu January 2017 (has links)
Seismic isolation systems are widely used to protect reinforced concrete (RC) structures against the effects of strong ground motions. After a magnitude 6.6 earthquake, the outpatient building of Lushan People’s hospital in China remained in good condition due to the seismic isolation technology, while the non-isolated older outpatient building nearby experienced major damage. The building provides a good opportunity to study and assess the contribution of isolation systems to seismic performance of RC structures. In the current research project, the isolated outpatient building was modelled and analyzed using computer software SAP2000. The post-yield behaviour of the structure was modelled by assigning multi-linear plastic links to frame objects. The rubber isolators were represented by rubber isolator link elements, assigned as a single joint element between the ground and the superstructure. The isolated structure was subjected to four earthquake records with increasing intensity. The performances of the isolated structure were compared with those of the fixed-base structures in terms of lateral inter-storey drifts, peak absolute floor accelerations, and residual drifts. The laminated rubber bearings, the high damping isolation devices, composed of rubber bearings and viscous dampers, and the hybrid isolation system of rubber bearings and friction pendulum bearings were analysed. The effectiveness of the three base isolation systems considered in enhancing structural performance was investigated. The results show the level of improvement attained in seismic response by each system. They also illustrate that the rubber bearings coupled with friction pendulum bearings produce the best drift control without causing excessive horizontal displacements at the base level and without adversely affecting floor accelerations.
3

Base Isolation of a Chilean Masonry House: A Comparative Study

Husfeld, Rachel L. 16 January 2010 (has links)
The objective of this study is to reduce the interstory drifts, floor accelerations, and shear forces experienced by masonry houses subject to seismic excitation. Ambient vibration testing was performed on a case study structure in Maip�, Chile, to identify characteristics of the system. Upon creating a multiple degree-of-freedom (MDOF) model of the structure, the effect of implementing several base isolation techniques is assessed. The isolation techniques analyzed include the use of friction pendulum systems (FPS), high-damping rubber bearings (HDRB), two hybrid systems involving HDRB and shape memory alloys (SMA), and precast-prestressed pile (PPP) isolators. The dynamic behavior of each device is numerically modeled using analytical formulations and experimental data through the means of fuzzy inference systems (FIS) and S-functions. A multiobjective genetic algorithm is utilized to optimize the parameters of the FPS and the PPP isolation systems, while a trial-and-error method is employed to optimize characteristic parameters of the other devices. Two cases are studied: one case involves using eight devices in each isolation system and optimizing the parameters of each device, resulting in different isolated periods for each system, while the other case involves using the number of devices and device parameters that result in a 1.0 sec fundamental period of vibration for each baseisolated structure. For both cases, the optimized devices are simulated in the numerical model of the case study structure, which is subjected to a suite of earthquake records. Numerical results for the devices studied indicate significant reductions in responses of the base-isolated structures in comparison with their counterparts in the fixed-base structure. Metrics monitored include base shear, structural shear, interstory drift, and floor acceleration. In particular, the PPP isolation system in the first case reduces the peak base shear, RMS floor acceleration, peak structural shear, peak interstory drift, and peak floor acceleration by at least 88, 87, 95, 95, and 94%, respectively, for all of the Chilean earthquakes considered. The PPP isolation system in the second case (yielding a 1.0 sec period) and the FPS isolation systems in both cases also significantly reduce the response of the base-isolated structure from that of the fixed-base structure.
4

Experimental and Numerical Study on the Extreme Behaviors of Sliding Isolation Bearings

Bao, Yu January 2017 (has links)
Sliding isolation bearings are used widely around the world to minimize damage to structures and their contents during earthquakes. Past studies have typically focused on the behavior of sliding isolation bearing under design conditions; however, as the performance-based earthquake engineering advances, it is necessary and critical to understand the ultimate or even failure behavior, of structural systems under extreme conditions. Using a double friction pendulum bearing with non-articulated slider as an example, this thesis comprehensively investigates the extreme behavior of the sliding bearing components as well as steel frame buildings isolated using these bearings. This thesis is comprised of two major parts. The first includes numerical and experimental studies of double friction pendulum bearings at the component-level. Finite element investigation shows that depending on the superstructure mass there are two major failure modes for the double friction pendulum bearings. When the superstructure mass is sufficiently large, the failure mode is dominated by the restraining rim yielding; however, when the mass is relatively small, its failure mode shifts to bearing uplift. A simplified analytical model which can directly simulate the impact and uplift behavior of double friction pendulum bearing is also implemented, comparing well to the finite element analysis. Then, to validate the ability of the models to predict extreme behavior as well as to investigate the effect of the restraining rim design, which varies around the world, an experimental study was carried out. Uplift behavior and significant rim yielding were observed during the shake table tests. Moreover, other response parameters, including uplift and shear forces, are evaluated and compared among different rim designs. It is found the restraining rim design has a substantial influence on the bearing’s extreme behavior. The second part of the thesis investigates the system-level behavior of steel frame buildings isolated with double friction pendulum bearings. It is found that the stiffness of the superstructure largely dictates the system-level failure modes and collapse probability. Initially, bearings with rigid restraining rims are investigated. For flexible moment-resisting frames, the system-level failure modes are mixed: both the bearing uplift and superstructure yielding contribute; also, using current code-minimum design results in acceptably low probability of collapse. However, for stiff concentrically-braced frames, the impact force can impose large ductility demands on the superstructure regardless of its strength. As a result, the system-level failure comes exclusively from superstructure yielding, and only by increasing bearing’s displacement capacity beyond the minimum code allowed can the design meet as acceptably low collapse probability. When flat rims are used instead for the bearing design, the failure modes for both building types are exclusively bearing failure. Furthermore, while it is more apparent for concentrically-braced frames, using flat rims for the bearings can reduce the collapse probability compared to using rigid rims. / Thesis / Doctor of Philosophy (PhD)
5

Seismic Performance Comparison of a Fixed-Base Versus a Base-Isolated Office Building

Marrs, Nicholas Reidar 01 June 2013 (has links) (PDF)
The topic of this thesis is base isolation. The purpose of this thesis is to offer a relative understanding of the seismic performance enhancements that a typical 12-story steel office building can achieve through the implementation of base isolation technology. To reach this understanding, the structures of a fixed-base office building and a base-isolated office building of similar size and layout are designed, their seismic performance is compared, and a cost-benefit analysis is completed. The base isolation system that is utilized is composed of Triple Friction Pendulum (TFP) bearings. The work of this thesis is divided into four phases. First, in the building selection phase, the structural systems (SMF and SCBF), layout, location (San Diego, CA), and design parameters of the buildings are selected. Then, in the design phase, each structure is designed using modal response spectrum analysis in ETABS. In the analysis phase, nonlinear time history analyses at DBE and MCE levels are conducted in PERFORM-3D to obtain the related floor accelerations and interstory drifts. Finally, in the performance assessment phase, probable damage costs are computed using fragility curves and FEMA P-58 methodology in PACT. Damage costs are computed for each building and seismic demand level and the results are compared.
6

Seismic isolation of nuclear reactor vessels considering soil-structure interaction

Samyog Shrestha (13149003) 26 July 2022 (has links)
<p>The research presented in this dissertation investigates the influence of soil-structure<br> interaction on seismic isolation of nuclear reactor vessels using numerical simulations. This<br> research is motivated by the nuclear industry searching for viable solutions to standardize<br> the design of reactor vessels. Seismic isolation of reactor vessels is a potential solution as it<br> enables deployment of standardized reactor vessels irrespective of site seismic hazard<br> thereby saving time and cost by allowing large-scale factory fabrication of standard<br> modules and by eliminating the need for repeated approval of reactor vessel design. Seismic<br> isolation is also a technology that has matured from successful implementation in buildings<br> and bridges allowing easier transition to nuclear applications. Currently, the<br> implementation of component-level seismic isolation in nuclear industry is challenging due<br> to gaps in research and lack of specific guidelines.</p> <p><br></p> <p><br> In this research, the effectiveness and potential limitations of using conventional friction<br> pendulum bearings for component-level isolation are investigated based on conceptual<br> numerical models of seismically isolated reactor vessels at different nuclear power plant<br> sites subject to a variety of ground motions. The numerical modeling and analysis<br> approach presented in this research are checked using experimental data and results from<br> multiple numerical codes to ensure reliability of the obtained analysis results.</p> <p><br></p> <p><br> Within the scope of this study, it is found that slender vessels are particularly vulnerable<br> to rotational acceleration at the isolation interface. Rotational acceleration at the isolation<br> interface is caused by rotation at the foundation level of the containment building housing<br> the isolated reactor vessel and by excitation of higher horizontal translational modes of the<br> seismically isolated system. Rotation of the building foundation increases with decrease in<br> shear wave velocity of the soil surrounding the building foundation. When the containment<br> building is embedded below the soil surface, the effect of embedment on peak horizontal<br> acceleration of the isolated vessel depends on the amount of increase in shear wave velocity<br> at the foundation level of the building. When embedment does not result in any change in<br> shear wave velocity, it is found to have negligible impact on the acceleration response of the<br> isolated vessel.</p> <p><br></p> <p>  The optimum location to support a vessel for seismic isolation is found to be on a plane<br> passing through its center of mass. It minimizes horizontal acceleration in the isolated<br> vessel as well as the tendency of isolator to uplift. Isolator uplift and exceedence of<br> displacement capacity of the isolator during extreme events are possible drawbacks in using<br> seismic isolation technology since they produce impact forces due to uplift and<br> re-engagement of the isolator or due to collision between the isolated system and the moat<br> wall. If such cases are avoided, seismic isolation of reactor vessel could provide more than<br> 50% reduction in peak acceleration of vessel except for low-intensity motions that do not<br> engage the isolator.<br>  <br>  </p>

Page generated in 0.0962 seconds