• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la somitogenèse chez le serpent des blés

Gomez, Céline 19 December 2007 (has links) (PDF)
Le plan d'organisation des vertébrés est caractérisé par la répétition de segments tels que les vertèbres. Les premiers signes de segmentation sont observés pendant l'embryogenèse précoce, lorsque les précurseurs des vertèbres, appelés " somites ", se forment de manière périodique à partir du mésoderme paraxial présomitique (PSM). Il a été proposé qu'une "horloge de segmentation" contrôlerait la périodicité de formation des somites en interagissant avec un "front de détermination" reculant caudalement dans le PSM. Afin de comprendre les mécanismes établissant le nombre total de somites chez les vertébrés, j'ai comparé la régulation de la somitogenèse dans une espèce en formant un grand nombre-le serpent des blés- avec la souris, le poulet et le poisson zèbre. J'ai premièrement cloné et analysé par hybridation in situ l'expression des gènes impliqués dans la formation de front de détermination et de l'horloge de segmentation. Le patron d'expression des gènes associés au front s'est révélé conservé, alors que celui de lunatic fringe, un gène associé à l'horloge, s'est révélé particulièrement atypique. Une étude comparative basée sur un modèle mathématique nous a conduit à l'hypothèse que ce patron d'expression traduisait un rythme accéléré de l'horloge par rapport à la vitesse d'élongation de l'axe chez le serpent, expliquant ainsi sa production accrue de somites. En conclusion, notre étude, conduite sur un modèle original, suggère que la relation entre horloge et croissance de l'axe est un facteur important pour expliquer la différence du nombre de somites entre vertébrés.
2

Dynamique de la signalisation cellulaire au cours de la segmentation des Vertébrés / Signaling dynamics during Vertebrate segmentation

Hubaud, Alexis 27 June 2016 (has links)
La segmentation de l’axe antéro-postérieur en somites est une caractéristique majeure des Vertébrés. Ce processus est basé sur un oscillateur, l’« horloge de segmentation ». Cette thèse cherche à comprendre la dynamique de signalisation régulant ce processus. Nous avons étudié la régulation transcriptionnelle de Mesp2 et nous avons montré que Tbx6 contrôle son expression chez le poulet. Nous présentons également un système d’étude ex vivo présentant des oscillations stables du gène cyclique Lfng. Nous avons mis en évidence un effet de population régulant la génération de ces oscillations et reposant sur la voie Notch et des facteurs mécaniques que nous interprétons avec un modèle d’oscillateur excitable. De plus, nous avons démontré un effet dose-dépendant de la voie Fgf sur la différenciation cellulaire, remettant ainsi en question le modèle actuel de segmentation. Par ailleurs, ce système d’étude nous a permis d’identifier un rôle du taux de traduction dans le contrôle de la période de l’horloge. Enfin, nous présentons des travaux, où nous cherchons à reconstituer l’horloge de segmentation in vitro à partir de cellules souches murines différenciées. / The segmentation of the anteroposterior axis in somites is a major feature of Vertebrates. This process relies on an oscillator, the “segmentation clock”. The present thesis addresses the signaling dynamics regulating this process. We studied the transcriptional regulation of Mesp2 and showed that Tbx6 controls its expression in chicken. We established an ex vivo experimental system with stable oscillations of the cyclic gene Lfng. We demonstrated the existence of a population behavior that controls the generation of oscillations and involves the Notch pathway and mechanical factors. We interpreted these observations in the framework of an excitable oscillator. Moreover, we evidenced a dose-dependent effect of Fgf signaling on cell determination that challenges current models of segmentation. Furthermore, this experimental system has enabled us to identify a role of the translation rate on the clock period. Last, we showed ongoing work aiming to recapitulate the segmentation in vitro using differentiated mouse embryonic stem cells.

Page generated in 0.2966 seconds