Spelling suggestions: "subject:"front end""
11 |
Snímání spektra pro kognitivní rádiové sítě - vliv vlastností reálného komunikačního řetězce / Spectrum sensing in the cognitive radio networks - influence of real communication link parametersLekomtcev, Demian January 2016 (has links)
The doctoral thesis deals with spectrum sensing in cognitive radio networks (CRN). A number of international organizations are currently actively engaged in standardization of CRN and it points out to the fact that this technology will be widely used in the near future. One of the key features of this technology is a dynamic access to the spectrum, which can be affected by many different harmful factors occurring in the communication chain. The thesis investigates the influence of selected factors on the spectrum sensing process. Another contribution of the work is the optimization of the Kolmogorov - Smirnov statistical test that can be applied for the primary user signal detection. The work also incorporates the analysis of the influence of the harmful effects caused by the commonly used transmitters and receivers on various spectrum sensing methods. The investigations are verified by the results of the simulations and also by the measurements with experimental platforms based on the software-defined radio (SDR).
|
12 |
Σχεδίαση και ανάπτυξη ολοκληρωμένων κυκλωμάτων για συστήματα υπερευρείας ζώνης με έμφαση στα κυκλώματα του πομπού / Design and development of integrated circuits for ultra wideband systems, with emphasis on the transmitter circuitsΠαπαμιχαήλ, Μιχαήλ 14 May 2012 (has links)
Η πληθώρα των εφαρμογών που μπορεί να εξυπηρετήσει η τεχνολογία Υπερευρείας Ζώνης (UWB), από τα ασύρματα προσωπικά δίκτυα υψηλών ταχυτήτων, μέχρι τα ασύρματα δίκτυα αισθητήρων με δυνατότητες ακριβούς εντοπισμού θέσης, και τα ασύρματα δίκτυα ιατρικών αισθητήρων, έχει προκαλέσει έντονο ερευνητικό ενδιαφέρον γύρω από τις υλοποιήσεις UWB συστημάτων. Η ασυνήθιστα μεγάλη περιοχή συχνοτήτων που έχει ανατεθεί στο UWB, από τα 3.1-10.6 GHz, επιτρέπει την επίτευξη υψηλών ταχυτήτων με απλά σχήματα διαμόρφωσης, ωστόσο, λόγω της διαμοίρασης του φάσματος με τις υφιστάμενες τεχνολογίες ασύρματης δικτύωσης, οι UWB εκπομπές πρέπει να περιορίζονται σε ισχύ κάτω από το κατώφλι των -41.3 dBm/MHz, ικανοποιώντας πολύ αυστηρές μάσκες εκπομπής που εισάγουν έντονες προκλήσεις στη σχεδίαση των πομπών.
Η υλοποίηση αναδιατάξιμων UWB πομπών σε σύγχρονες CMOS τεχνολογίες, με υψηλή φασματική ευελιξία, ταχύτητα και ποιότητα διαμόρφωσης, καθώς και με χαμηλή κατανάλωση, αποτέλεσε το αντικείμενο της συγκεκριμένης διατριβής. Υιοθετώντας την αρχιτεκτονική Multi-Band Impulse-Radio (MB-IR) σε συνδυασμό με την τεχνική Direct Sequence BPSK, η έρευνα προσανατολίστηκε προς την ανάπτυξη καινοτόμων μονάδων βασικής ζώνης, με στόχο την ενεργειακά αποδοτική αντιστροφή Γκαουσιανών μορφοποιημένων παλμών υψηλής ποιότητας φάσματος και διάρκειας μικρότερης ακόμα και από 1 nsec.
Προς αυτή την κατεύθυνση, αναπτύχθηκε μια καινοτόμα γεννήτρια Γκαουσιανών παλμών με πολύ χαμηλούς πλευρικούς λοβούς στο φάσμα, τυπικά κάτω από -40 dB, ώστε να υποστηρίζονται οι αυστηρότερες μάσκες εκπομπής ή και μελλοντικές. Η σχεδίασης της προτεινόμενης γεννήτριας είχε ως κριτήριο την ευέλικτη ρύθμιση της διάρκειας των παραγόμενων παλμών, και αξιοποίησε τη χαρακτηριστική μεταφοράς τάσης ενός ωμικά φορτωμένου, ασύμμετρου CMOS αντιστροφέα. Η γεννήτρια βασίζεται κυρίως σε ψηφιακά κυκλώματα πολύ χαμηλής τάσης και, σε σύγκριση με τις υφιστάμενες υλοποιήσεις, παρουσιάζει σημαντικό προβάδισμα στον τομέα της ταχύτητας, καθώς και στο πλάτος εξόδου, η μεγάλη τιμή του οποίου χαλαρώνει σημαντικά τη σχεδίαση του RF front end. Η γεννήτρια μελετήθηκε διεξοδικά, διεξήχθη ανάλυση κλιμάκωσης, έγινε εξαγωγή σχεδιαστικών εξισώσεων και αναπτύχθηκαν εργαλεία λογισμικού για την αυτοματοποιημένη σχεδίασή της. Για περαιτέρω αύξηση της ταχύτητας των παλμικών σημάτων εφαρμόσθηκε ειδική σχεδίαση, η οποία αντιπραγματεύεται την ταχύτητα με το επίπεδο των λοβών του φάσματος.
Για την αποδοτική BSPK διαμόρφωση των Γκαουσιανών παλμών αναπτύχθηκε ειδική τοπολογία “Μεταγωγής Σήματος Πυροδότησης Πλήρους Ισορροπίας με Up-Conversion”. Η τοπολογία αυτή, σε αντίθεση με τις ανταγωνιστικές τοπολογίες, αποφεύγει την αντιστροφή του παλμού με αναλογικά κυκλώματα υψηλής κατανάλωσης, αλλά και την αναλογική μεταγωγή, καθώς η διαμόρφωση λαμβάνει χώρα πριν από την παραγωγή των παλμών. Παράλληλα, επιτυγχάνονται υψηλοί ρυθμοί, καθώς και υψηλή ποιότητα διαμόρφωσης λόγω των ισορροπημένων μονοπατιών της τοπολογίας. Η γεννήτρια μαζί με το διαμορφωτή αποτελούν τις καινοτόμες παρεμβάσεις στη μονάδα Βασικής Ζώνης του προτεινόμενου πομπού.
Για την ολοκλήρωση της λειτουργικότητας του πομπού, αναπτύχθηκε ένα RF front end, το οποίο αποτελείται από έναν διπλά ισορροπημένο μίκτη, έναν LO buffer, ένα μετατροπέα διαφορικού σήματος σε απλό, και έναν ενισχυτή ισχύος, ο οποίος είναι προσαρμοσμένος στα 50 Ohms, χωρίς να απαιτεί κανένα εξωτερικό στοιχείο. Το RF front end ολοκληρώθηκε μαζί με τη μονάδα βασικής ζώνης, και ο ολοκληρωμένος πομπός κατασκευάστηκε σε τεχνολογία CMOS 130 nm. Το ολοκληρωμένο προσαρτήθηκε στην RF πλακέτα συστήματος με την τεχνική Chip on Board. Για την επιτυχία του συστήματος με την πρώτη προσπάθεια έγινε συσχεδίαση σε επίπεδο IC-Package-PCB, δίνοντας ιδιαίτερη έμφαση στα ζητήματα Signal/Power Integrity.
Ο πομπός παρουσίασε την υψηλότερη ταχύτητα από τις ανταγωνιστικές MB-IR UWB υλοποιήσεις, ίση με 1.5 Gbps, με αντίστοιχη ενεργειακή αποδοτικότητα 21 pJoule/bit και μέτρο διανυσματικού σφάλματος 5.5%. Ο πομπός βελτίωσε τους πλευρικούς λοβούς στο φάσμα περισσότερο από 10 dB, ενώ η διατριβή, εκμεταλλευόμενη την αναδιαταξιμότητα του πομπού, παρουσιάζει, επιπλέον, τις πρώτες μετρήσεις σε ταχύτητες εκατοντάδων Mbps για ικανοποίηση της χαμηλής ζώνης της πρόσφατα θεσμοθετημένης, και εξαιρετικά αυστηρής, ευρωπαϊκής μάσκας εκπομπής. / The multitude of applications that Ultra-Wideband (UWB) technology can serve, from high-speed Wireless Personal Area Networks, to Wireless Sensor Networks with precision Geolocation abilities, and Wireless Medical Networks, has attracted intense research interest in the implementation of UWB systems. The unusually wide range of frequencies assigned to UWB, from 3.1-10.6 GHz, allows UWB systems employing low order modulation schemes to enjoy high throughput at low power consumption. However, since UWB shares the spectrum with existing wireless networking technologies, UWB emissions must be limited to a power spectral density below the threshold of -41.3 dBm/MHz, satisfying very stringent emission masks and introducing great challenges in the design of UWB transmitters.
The subject of this thesis is the design of low power, fully integrated, reconfigurable CMOS UWB transmitters, with high spectral flexibility, high speed and high modulation quality. Adopting the Multi-Band Impulse-Radio architecture, in conjunction with the Direct Sequence BPSK modulation, the research focused on the development of a baseband unit, able to precisely invert Gaussian shaped, subnanosecond pulses. The key contributions of this thesis are a CMOS Gaussian Pulse Generator and a BSPK modulation topology, which jointly constitute the proposed baseband unit.
The Pulse Generator (PG) is based on non-linear shaping, so as to facilitate the configurability of the output pulse duration, and exploits the voltage transfer characteristic of a Resistive Loaded Asymmetrical CMOS Inverter, which results in spectral sidelobes typically better than -40 dB. The PG incorporates mostly-digital low voltage circuits, while the MOSFET devices that undertake the pulse shaping avoid exclusive operation in weak inversion, in contrast to previous implementations. Consequently, the proposed CMOS PG is able to support higher throughput, as well as higher output amplitude, which relaxes considerably the design of the RF front end. This thesis presents a systematic design procedure and a scaling analysis of the non-linear pulse shaper. Moreover, in order to further increase the speed, a special PRF boost technique is proposed, which trades off speed and spectral efficiency for the spectral sidelobes level.
Regarding the BPSK modulator, this work introduces the “Trigger Switching Fully Balanced Up-Conversion” topology, which avoids the use of power-hungry and distortion-prone analog circuits for the accurate inversion of the subnanosecond shaped pulses, as well as avoids the application of analog waveform switching to the baseband pulses, since the baseband modulation takes place before the generation of the pulses. The digital nature of the switching lends itself to high data rates, while the balanced paths of the topology ensure high modulation quality with minimal design effort. Wafer probing measurements confirmed the high performance of the baseband unit.
The functionality of the transmitter was completed by the development of an RF front end which consists of a double balanced mixer, an LO buffer, a differential to single-ended (DtoSE) converter, and a power amplifier which is ready to drive a 50 Ohms load without requiring any off-chip components. The integrated transmitter, which incorporates the proposed baseband unit and the RF front end, was fabricated in 130 nm CMOS technology. The transmitter RFIC was directly attached to the system RF PCB using the Chip-on-Board packaging option. The First-Pass success of the system was ensured by paying particular attention to Signal/Power Integrity issues and following an IC-Package-PCB co-design procedure.
The transmitter was measured up to 1.5 Gbps, which, to the author’s knowledge, was the highest speed amongst the competitive Multi-Band Impulse-Radio UWB implementations in the literature. The corresponding energy efficiency was 21 pJoule/bit and the Error Vector Magnitude (EVM) 5.5%, while the proposed transmitter improved the spectral sidelobes by over 10 dB. Exploiting the reconfigurability of the transmitter, this thesis presents the first measurements at multi-Mbps speeds that completely meet the final version of the European spectrum emission mask.
|
Page generated in 0.0471 seconds