Spelling suggestions: "subject:"frontend converters"" "subject:"frontend converters""
1 |
Three-Phase Power Factor Correction Circuits for Low-Cost Distributed Power SystemsBarbosa, Peter M. 22 August 2002 (has links)
Front-end converters with power factor correction (PFC) capability are widely used in distributed power systems (DPSs). Most of the front-end converters are implemented using a two-stage approach, which consists of a PFC stage followed by a DC/DC converter. The purpose of the front-end converter is to regulate the DC output voltage, supply all the load converters connected to the distributed bus, guarantee current sharing, and charge a bank of batteries to provide backup energy when the power grid breaks down.
One of the main concerns of the power supply industry is to obtain a front-end converter with a low-cost PFC stage, while still complying with required harmonic standards, especially for high-power three-phase applications. Having this statement in mind, the main objective of this dissertation is to study front-end converters for DPS applications with PFC to meet harmonic standards, while still maintaining low cost and performance indices.
To realize the many aforementioned objectives, this dissertation is divided into two main parts: (1) two-stage front-end converters suitable for telecom applications, and (2) single-stage low-cost AC/DC converters suitable for mainframe computers and server applications. The use of discontinuous conduction mode (DCM) boost rectifiers is extensively explored to achieve simplicity, while reducing the cost for DPS applications. Interleaving of DCM boost rectifiers is also explored as an alternative approach to further reduce the system cost by reducing the filtering requirements. All the solutions discussed are implemented for 3kW applications, while 6kW is obtained by interleaving two converters. / Ph. D.
|
2 |
Novel DC/DC Converters For High-Power Distributed Power SystemsFrancisco Venustiano, Canales Abarca 27 August 2003 (has links)
One of the requirements for the next generation of power supplies for distributed power systems (DPSs) is to achieve high power density with high efficiency.
In the traditional front-end converter based on the two-stage approach for high-power three-phase DPSs, the DC-link voltage coming from the power factor correction (PFC) stage penalizes the second-stage DC/DC converter. This DC/DC converter not only has to meet the characteristics demanded by the load, but also must process energy with high efficiency, high reliability, high power density and low cost. To meet these requirements, approaches such as the series connection of converters and converters that reduce the voltage stress across the main devices have been proposed.
In order to improve the characteristics of these solutions, this dissertation proposes high-efficiency, high-density DC/DC converters for high-power high-voltage applications.
In the first part of the dissertation, a DC/DC converter based on a three-level structure and operated with pulse width modulation (PWM) phase-shift control is proposed. This new way to operate the three-level DC/DC converter allows soft-switching operation for the main devices. Zero-voltage switching (ZVS) and zero-voltage and zero-current switching (ZVZCS) soft-switching techniques are studied, analyzed and compared in order to improve the characteristics of the proposed converter. This results in a series of ZVS and ZVZCS three-level DC/DC converters for high-power high-voltage applications. In all cases, results from 6kW prototypes operating at 100 kHz are presented.
In addition, with the ultimate goal of improving the power density of the DC/DC converter, a study of several resonant DC/DC converters that can operate at higher switching frequencies is presented. From this study, a three-element ZVS three-level resonant converter for applications with wide input voltage and load variations is proposed. Experimental results at 745 kHz obtained without penalizing the efficiency of the PWM approaches are presented.
The second part of the dissertation proposes a quasi-integrated AC/DC three-phase converter that aims to reduce the complexity and cost of the traditional two-stage front-end converter. This converter improves the complexity/low-efficiency tradeoff characteristics evident in the two-stage approach and previous integrated converters. The principle of operation for the converter is analyzed and verified on a 3kW experimental prototype. / Ph. D.
|
3 |
Integrated Common And Differential Mode Filters With Active Damping For Active Front End Motor DrivesAcharya, Anirudh B 01 1900 (has links) (PDF)
IGBT based power converters acts as front end in the present day Adjustable Speed Drive (ASD). This offers many advantages and makes regenerative action possible. PWM rectifier operation produces electrically noisy DC bus on common mode basis. This results in higher ground current as compared to three phase diode bridge rectifier. Due to fast turn-ON and turn-OFF time of IGBT, the inverter output voltage dv/dt is high during switching transients and voltage waveform is rich in harmonics. As a result, in applications involving long cable the motor terminal voltage during the switching transient is as high as twice the applied voltage. This voltage stress reduces the life of insulation in motors. The high dv/dt output voltage applied at the motor terminal excites the parasitic capacitive coupling resulting in increased ground currents and causes Electric Discharge Machining (EDM) which reduces the life of motor bearings. The common mode voltage due to PWM rectifier and the inverter appear at the motor terminals exacerbating these problems.
The common mode voltage due to PWM inverter with PWM rectifier is analyzed. An integrated approach for filter design is proposed wherein the adverse effects due to common mode voltage of both AFE converter and the inverter is addressed. The proposed topology addresses the problems of common mode voltage, common mode current and voltage doubling due to ASD. The design procedure for proposed filter topology is discussed with experimental results that validate the effectiveness of the filter.
Inclusion of such higher order filter in the converter topology leads to problems such as resonance. Passive methods are investigated for damping the line resonance due to LCL filter and common mode resonance due to common mode filter. The need for active damping technique for resonance due to common mode filter is presented. State space based damping technique is proposed to effectively damp the resonance due to line filter and the common mode filter. Experimental results are presented that validate the effectiveness of active damping both on the line basis (differential mode) and line to ground basis (common mode) of the filter.
|
Page generated in 0.0629 seconds