Spelling suggestions: "subject:"frontier orbital""
1 |
On the mechanism of homogeneous alkene metathesis : a computational study / Jean Isabelle du ToitDu Toit, Jean Isabelle January 2012 (has links)
A mechanism for alkene metathesis has been proposed by Chauvin, wherein metal
carbenes act as catalysts for the reaction. The use and discovery of Fischer-, Tebbe-,
Grubbs- and Schrock-type metal carbenes have to a certain extent proven the general
mechanism. These metal carbenes showed different activity for alkene metathesis.
Only Grubbs- and Schrock-type carbenes proved to be highly active for metathesis. A
lot of studies have been done on the reasons for the activity, but still the main factors
are unknown.
In this study a molecular modelling investigation into the mechanism of the alkene
metathesis reaction is done in an attempt to identify a factor(s) that can predict
activity. By defining and knowing factors that contribute to activity, new catalysts can
be designed that are truly active and selective. Fischer-, Tebbe-, Grubbs- and Schrocktype
metal carbenes are investigated in this regard.
The results of the investigation indicate that the frontier molecular orbital theory
shows a possibility for prediction of alkene metathesis activity. By observing the size
and location of the atomic orbital coefficients of the molecular orbital, the site of
primary overlap for formation of metathesis products could be identified. The largest
atomic orbital coefficient of the LUMO should be located on the metal atom. An
atomic orbital coefficient should also be present on the carbene carbon for secondary
overlap for formation of the metallacyclobutane intermediate. By exchanging the
ruthenium in the second generation Grubbs catalyst framework the effect of the metal
could be elucidated. The results clearly showed the important influence the metal
atom has on the electronic properties of the catalyst complex. The results of frontier molecular orbital calculations supported the general activity
trend of the four main types of metal carbenes for the metathesis of linear alkenes. By
changing the metal in known catalyst frameworks a deeper understanding can be
gained for the design of new alkene metathesis catalysts. / Thesis (PhD (Chemistry))--North-West University, Potchefstroom Campus, 2013
|
2 |
On the mechanism of homogeneous alkene metathesis : a computational study / Jean Isabelle du ToitDu Toit, Jean Isabelle January 2012 (has links)
A mechanism for alkene metathesis has been proposed by Chauvin, wherein metal
carbenes act as catalysts for the reaction. The use and discovery of Fischer-, Tebbe-,
Grubbs- and Schrock-type metal carbenes have to a certain extent proven the general
mechanism. These metal carbenes showed different activity for alkene metathesis.
Only Grubbs- and Schrock-type carbenes proved to be highly active for metathesis. A
lot of studies have been done on the reasons for the activity, but still the main factors
are unknown.
In this study a molecular modelling investigation into the mechanism of the alkene
metathesis reaction is done in an attempt to identify a factor(s) that can predict
activity. By defining and knowing factors that contribute to activity, new catalysts can
be designed that are truly active and selective. Fischer-, Tebbe-, Grubbs- and Schrocktype
metal carbenes are investigated in this regard.
The results of the investigation indicate that the frontier molecular orbital theory
shows a possibility for prediction of alkene metathesis activity. By observing the size
and location of the atomic orbital coefficients of the molecular orbital, the site of
primary overlap for formation of metathesis products could be identified. The largest
atomic orbital coefficient of the LUMO should be located on the metal atom. An
atomic orbital coefficient should also be present on the carbene carbon for secondary
overlap for formation of the metallacyclobutane intermediate. By exchanging the
ruthenium in the second generation Grubbs catalyst framework the effect of the metal
could be elucidated. The results clearly showed the important influence the metal
atom has on the electronic properties of the catalyst complex. The results of frontier molecular orbital calculations supported the general activity
trend of the four main types of metal carbenes for the metathesis of linear alkenes. By
changing the metal in known catalyst frameworks a deeper understanding can be
gained for the design of new alkene metathesis catalysts. / Thesis (PhD (Chemistry))--North-West University, Potchefstroom Campus, 2013
|
3 |
Investigação teórica sobre a possibilidade dos porfirinatos de silicio(IV) catalisarem O2 e NO: uma abordagem termodinâmica / Theoretical research on the possibility of silicon (IV) porphyrinatos catalyze O2 and NO: a thermodynamic boardingBattisti, Marcos Valerio 28 June 2007 (has links)
A busca por materiais catalíticos fora dos metais de transição foi o objetivo dessa tese. Principalmente se considerarmos a escassez dos metais nobres como matéria prima para a catálise de moléculas diatômicas, em especial o oxigênio e o óxido de nitrogênio. A primeira molécula está diretamente relacionada com à obtenção de energia em células a combustível, especificamente, o ânodo das células a combustível. A segunda molécula está relacionada diretamente a eletroredução de íons nitrato, ou seja, na formação de uma molécula diatômica muito estável quimicamente e muito tóxica. Por isso foi utilizada a DFT (Teoria do Funcional da Densidade) para a realização de diversas simulações a 298,15K e 1 atm, com moléculas no estado gasoso de porfirinatos de silício (IV) reagindo com O2 e NO para a confirmação catalítica dos porfirinatos. Para isso foram utilizados os conjuntos de base 3-21G, 6-31G, 6-31G* e 6-31G(d), que mostraram tendências catalíticas dos porfirinatos estudados. Assim, por exemplo, pode-se evidenciar a tendência de hidrólise do porfirinato de silício (IV) através dos cálculos, já observado e demonstrado através de medidas experimentais. Porfirinatos de silício (IV) e octaetilporfirinatos de silício (IV) mostram a mesma tendência de formação de ligação química com O2 , forma de \"ponte\", diferenciando nos valores absolutos de DG e DH, e na ligação do O2 com o anel porfirínico. Com porfirinato, o oxigênio ligou-se com o silício e com o carbono meso; já com o octaetilporfirinato, o O2 ligou-se com o silício e com o nitrogênio do anel, promovendo uma ruptura de ligação entre o silício (presente no centro das porfirinas) e o nitrogênio do anel. A mesma tendência foi observada quando foram adicionadas hidroxilas nos carbonos meso do anel porfirínico, demonstrando que a presença de grupos doadores de elétrons nos carbonos meso não fortalece as ligações silício e nitrogênio presentes no sistema, e um átomo de cloro como contra-íon também não influencia no resultado final da reação. Quando reagimos o sistema com hidrogênio, observa-se a formação de duas moléculas de água fracamente ligadas ao sistema. Octaetilporfirinato de silício (IV) reagiu apenas com duas moléculas de NO, sendo observado a formação de uma estrutura pentagonal sobre o silício, rompendo-se duas ligações entre silício e nitrogênio do anel porfirínico. Quando colocado hidroxilas e cloro no sistema octaetilporfirinato de silício (IV), observou-se a reação apenas com uma molécula de NO, ligada ao nitrogênio do anel, sem a formação de NO+, comum em sistemas porfirínicos cujo átomo central é ferro, por exemplo. Também observou-se a tendência de formação do íon amônio e água, quando é colocado no sistema moléculas de hidrogênio para reagir com o NO preso ao anel porfirínico. Na prática, tanto os porfirinatos de silício (IV) quanto os octaetilporfirinatos de silício (IV) possuem contra-ions, sendo o mais comum o cloreto. Por isso, o estudo da labilidade do íon cloreto com as moléculas estudadas foi de fundamental importância na determinação da tendência desses sistemas. Assim pode-se inferir, por exemplo, que o cloreto é substituído pela molécula de oxigênio numa reação entre esses dois reagentes. Para finalizar, CO e H2 não reagiram com os porfirinatos de silício (IV), mostrando uma forte tendência à repulsão, devido à diferença de fase nos orbitais atômicos. / The search for catalytic materials out of the transition metals was the objective of this thesis. Mainly if we consider the scarcity of noble metals as raw materials for the catalysis of diatomic molecules, especially oxygen and nitrogen oxides. The first molecule is directly related to the getting of energy in fuel cells, specifically, the anode of the fuel cells. The second molecule is related directly to the electroreduction of nitrate ions, in other words, in the formation of a very stable diatomic molecule and also very poisonous. Therefore, DFT was used (Density Functional Theory) for the accomplishment of several simulations, at 298,15K and 1 atm, with molecules in the gaseous state of silicon porphyrinatos (IV) reacting with O2 and NO for their catalytic confirmation. For that, the bases 3-21G, 6-31G, 6-31G * and 6-31G(d) were used to study the catalytic tendencies of the porphyrinatos here studied. For instance, the tendency of hydrolysis of silicon porphyrinato (IV) can be evidenced through theoretical calculations, as already observed and demonstrated through experimental works. Silicon porphyrinatos (IV) and silicon octaethilporphyirinatos (IV) showed the same tendency of forming a chemical bond with O2. They form a \"bridge\" changing the absolute values for DG and DH, and form a O2 bond with the porphyrinic ring. With porphyrinatos, the oxygen binds to silicon and to meso carbon; but with octaethilporphyirinato, the O2 binds to silicon and to the nitrogen of the ring, promoting a rupture between the silicon (present in the center of the porphyrins) and the nitrogen of the ring. The same tendency was observed when hydroxyls were added in the meso carbons of the porphyrinic ring showing that the presence of donor groups of electrons in the meso carbons does not strengthen the silicon and nitrogen bonds presented in the system, and a chlorine counter-ion does not influence the final result of the reaction as well. When we reacted the system with hydrogen, the formation of two weak molecules of water bound to the system is observed. Silicon octaethilporphyrinato (IV) just reacted with two NO molecules, and was observed the formation of a pentagonal structure on silicon breaking two bonds between silicon and nitrogen of the porphyrinic ring. When one puts hydroxyls and chlorine in the system silicon octaethilporphyrinato (IV), the reaction was only observed with a molecule of NO bound to the nitrogen of the ring without the formation of NO+ common in porphyrinic systems where the central atom is iron, for example. Also, it was observed the tendency of formation of the ammonium ion and water when we put in the system molecules of hydrogen to react with the NO linked to the porphyrin ring. In practice, as the silicon porphyrinatos (IV) as the silicon octaethilporphyrinatos (IV) possess counter-ions, where the most common is with chloride. Therefore, the study of the lability of the ion chloride with the studied molecules was of fundamental importance in the determination of the tendency of these molecular systems. From there, for instance, we could observe that the chloride is substituted by the oxygen molecule in a reaction between the two reactants. To conclude, CO and H2 did not react with the silicon porphyrinatos (IV) showing a strong tendency to repulsion due to the phase difference in the atomic orbitals.
|
4 |
Investigação teórica sobre a possibilidade dos porfirinatos de silicio(IV) catalisarem O2 e NO: uma abordagem termodinâmica / Theoretical research on the possibility of silicon (IV) porphyrinatos catalyze O2 and NO: a thermodynamic boardingMarcos Valerio Battisti 28 June 2007 (has links)
A busca por materiais catalíticos fora dos metais de transição foi o objetivo dessa tese. Principalmente se considerarmos a escassez dos metais nobres como matéria prima para a catálise de moléculas diatômicas, em especial o oxigênio e o óxido de nitrogênio. A primeira molécula está diretamente relacionada com à obtenção de energia em células a combustível, especificamente, o ânodo das células a combustível. A segunda molécula está relacionada diretamente a eletroredução de íons nitrato, ou seja, na formação de uma molécula diatômica muito estável quimicamente e muito tóxica. Por isso foi utilizada a DFT (Teoria do Funcional da Densidade) para a realização de diversas simulações a 298,15K e 1 atm, com moléculas no estado gasoso de porfirinatos de silício (IV) reagindo com O2 e NO para a confirmação catalítica dos porfirinatos. Para isso foram utilizados os conjuntos de base 3-21G, 6-31G, 6-31G* e 6-31G(d), que mostraram tendências catalíticas dos porfirinatos estudados. Assim, por exemplo, pode-se evidenciar a tendência de hidrólise do porfirinato de silício (IV) através dos cálculos, já observado e demonstrado através de medidas experimentais. Porfirinatos de silício (IV) e octaetilporfirinatos de silício (IV) mostram a mesma tendência de formação de ligação química com O2 , forma de \"ponte\", diferenciando nos valores absolutos de DG e DH, e na ligação do O2 com o anel porfirínico. Com porfirinato, o oxigênio ligou-se com o silício e com o carbono meso; já com o octaetilporfirinato, o O2 ligou-se com o silício e com o nitrogênio do anel, promovendo uma ruptura de ligação entre o silício (presente no centro das porfirinas) e o nitrogênio do anel. A mesma tendência foi observada quando foram adicionadas hidroxilas nos carbonos meso do anel porfirínico, demonstrando que a presença de grupos doadores de elétrons nos carbonos meso não fortalece as ligações silício e nitrogênio presentes no sistema, e um átomo de cloro como contra-íon também não influencia no resultado final da reação. Quando reagimos o sistema com hidrogênio, observa-se a formação de duas moléculas de água fracamente ligadas ao sistema. Octaetilporfirinato de silício (IV) reagiu apenas com duas moléculas de NO, sendo observado a formação de uma estrutura pentagonal sobre o silício, rompendo-se duas ligações entre silício e nitrogênio do anel porfirínico. Quando colocado hidroxilas e cloro no sistema octaetilporfirinato de silício (IV), observou-se a reação apenas com uma molécula de NO, ligada ao nitrogênio do anel, sem a formação de NO+, comum em sistemas porfirínicos cujo átomo central é ferro, por exemplo. Também observou-se a tendência de formação do íon amônio e água, quando é colocado no sistema moléculas de hidrogênio para reagir com o NO preso ao anel porfirínico. Na prática, tanto os porfirinatos de silício (IV) quanto os octaetilporfirinatos de silício (IV) possuem contra-ions, sendo o mais comum o cloreto. Por isso, o estudo da labilidade do íon cloreto com as moléculas estudadas foi de fundamental importância na determinação da tendência desses sistemas. Assim pode-se inferir, por exemplo, que o cloreto é substituído pela molécula de oxigênio numa reação entre esses dois reagentes. Para finalizar, CO e H2 não reagiram com os porfirinatos de silício (IV), mostrando uma forte tendência à repulsão, devido à diferença de fase nos orbitais atômicos. / The search for catalytic materials out of the transition metals was the objective of this thesis. Mainly if we consider the scarcity of noble metals as raw materials for the catalysis of diatomic molecules, especially oxygen and nitrogen oxides. The first molecule is directly related to the getting of energy in fuel cells, specifically, the anode of the fuel cells. The second molecule is related directly to the electroreduction of nitrate ions, in other words, in the formation of a very stable diatomic molecule and also very poisonous. Therefore, DFT was used (Density Functional Theory) for the accomplishment of several simulations, at 298,15K and 1 atm, with molecules in the gaseous state of silicon porphyrinatos (IV) reacting with O2 and NO for their catalytic confirmation. For that, the bases 3-21G, 6-31G, 6-31G * and 6-31G(d) were used to study the catalytic tendencies of the porphyrinatos here studied. For instance, the tendency of hydrolysis of silicon porphyrinato (IV) can be evidenced through theoretical calculations, as already observed and demonstrated through experimental works. Silicon porphyrinatos (IV) and silicon octaethilporphyirinatos (IV) showed the same tendency of forming a chemical bond with O2. They form a \"bridge\" changing the absolute values for DG and DH, and form a O2 bond with the porphyrinic ring. With porphyrinatos, the oxygen binds to silicon and to meso carbon; but with octaethilporphyirinato, the O2 binds to silicon and to the nitrogen of the ring, promoting a rupture between the silicon (present in the center of the porphyrins) and the nitrogen of the ring. The same tendency was observed when hydroxyls were added in the meso carbons of the porphyrinic ring showing that the presence of donor groups of electrons in the meso carbons does not strengthen the silicon and nitrogen bonds presented in the system, and a chlorine counter-ion does not influence the final result of the reaction as well. When we reacted the system with hydrogen, the formation of two weak molecules of water bound to the system is observed. Silicon octaethilporphyrinato (IV) just reacted with two NO molecules, and was observed the formation of a pentagonal structure on silicon breaking two bonds between silicon and nitrogen of the porphyrinic ring. When one puts hydroxyls and chlorine in the system silicon octaethilporphyrinato (IV), the reaction was only observed with a molecule of NO bound to the nitrogen of the ring without the formation of NO+ common in porphyrinic systems where the central atom is iron, for example. Also, it was observed the tendency of formation of the ammonium ion and water when we put in the system molecules of hydrogen to react with the NO linked to the porphyrin ring. In practice, as the silicon porphyrinatos (IV) as the silicon octaethilporphyrinatos (IV) possess counter-ions, where the most common is with chloride. Therefore, the study of the lability of the ion chloride with the studied molecules was of fundamental importance in the determination of the tendency of these molecular systems. From there, for instance, we could observe that the chloride is substituted by the oxygen molecule in a reaction between the two reactants. To conclude, CO and H2 did not react with the silicon porphyrinatos (IV) showing a strong tendency to repulsion due to the phase difference in the atomic orbitals.
|
5 |
Study of frontier orbitals and close-to-homo orbitals of acylphloroglucinolsTshiwawa, Tendamudzimu 13 January 2015 (has links)
MSc (Chemistry) / Department of Chemistry
|
Page generated in 0.0818 seconds