• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Increasing Screen Exposure Time Harms Inhibitory-Control Network in Developing Children: A Two Years Follow-up of the ABCD Study

Chen, Ya-Yun 12 1900 (has links)
As virtual experiences are rapidly substituting a significant proportion of in-person interactions during the COVID pandemic, it is critical to monitor the effect of screen exposure time on developing children’s behavior and nervous system. Screen use boosts information accessibility and, therefore, may delay the development of the inhibitory control networks in children, who are vulnerable to immediate reward-orientated tendencies and not yet capable of controlling their impulsivity. Therefore, it was hypothesized that as children become more exposed to screens, the development of the inhibitory control network would be delayed and their reward sensitivity will be augmented. Using the ABCD Study Data Repository, 8,334 children’s behavioral and neural data (aged 9-11) were included. Robust mediation analysis and correlation analysis were used to investigate how Screen Time interacts with children’s reward-orientated tendency (e.g. Behavioral approach system, BAS) and the brain's inhibitory network. Intrinsic Frontoparietal Network-Striatum (FPN-Striatum) connectivity strength was used as neural indices of the inhibitory control quality in children. Results showed that Screen Time significantly mediated the relationship between BAS and both waves of the intrinsic inhibitory process. A higher BAS was linked to a longer Screen Time and weaker inhibitory network connectivity. This complete/full mediation model indicates that Screen Time negatively influenced the strength of FPN-Striatum connectivity. In conclusion, the study revealed specific behavioral and neural correlates of screen exposure using a large database, and suggested that increasing screen exposure time may impair the inhibitory capability and increase impulsivity in children. / M.S. / The current study explored the effect of daily screen exposure in pre-adolescent children to provide an important springboard for future work in protecting developing children against the negative impacts of screen use, which has increased significantly during the COVID-19 pandemic. Over 8,000 children’s data from the Adolescent Brain Cognitive Development (ABCD) project was included and found that an increased daily screen exposure time is linked to an inefficient inhibitory control system in the brain. As children’s inhibitory control systems are still developing, this negative effect further hinder the maturation of inhibitory-control systems two years later. Given that the virtual movement is irreversible, the results provide scientific evidence that a balance between screen time and non-screen activities is required for developing children.

Page generated in 0.0725 seconds