• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 2
  • 2
  • Tagged with
  • 25
  • 25
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Uppföljning av absoluta tjälrörelser : En fallstudie av väg E10 i Kiruna

Elmehög, Hampus January 2019 (has links)
Detta examensarbete har haft som mål att undersöka tjällyftningen hos en väg i en fältstudie och utvärdera reliabiliteten hos två olika modeller för skattning av tjällyftning. Modellerna som har studerats är Trafikverkets nuvarande, vilken är implementerad i deras vägdimensioneringsverktyg PMS Objekt, samt segregation potential theory. Den studerade vägsträckan är belägen i Kiruna. I vägen har borrkärneprover tagits och vägens obundna lager, inklusive terassmaterial, har blivit analyserade i laboratorium. Dessa tester inkluderar både geoteknisk klassificering och endimensionella frysförsök på terassmaterialet. Materialets tjälfarlighet har klassificerats enligt både Trafikverkets eget och det amerikanska USACEs system. Alla prover, inklusive terrassmaterialet, består huvudsakligen av grus och sand. Enligt båda de använda klassificeringssystemen bedöms alla prover som icke tjälfarliga. Nivåmätningar utförda på vägen visar dock att tjällyftning ändå förekommer i vägen. Denna tjällyftning har inte kunnat modelleras framgångsrikt i PMS Objekt, där ingen tjällyftning alls fås trots att en dimensionerande vinter tillämpas i analysen. Däremot har en god överensstämmelse mellan bakåträknad och empiriskt beräknad tjälfarlighetsklassificering med SP0-värde enligt segregation potential theory kunnat ses. Även när detta beräknas utifrån utförda frysförsök fås en relativt god överensstämmelse. Studiens främsta fynd är att den visar på att även material som bedöms som ej tjällyftande enligt de två systemen för tjälfarlighetsklassificering faktiskt orsakar tjällyftning och att detta omfattar både terrass- och överbyggnadsmaterial. Studien visar att detta tjällyft främst beror på primärt lyft, varför klassificeringarna stämmer ganska väl om endast det sekundära lyftet avses. Studien har även visat på att Trafikverkets nuvarande modell är otillräcklig när det kommer till att modellera tjällyftning för grovkorniga jordar. Slutligen har studien även visat på möjligheten att bedöma jords tjälfarlighet med hjälp av segregation potential theory, även om också denna metod endast kan användas för att modellera sekundärt lyft. / The aim of the master thesis has been to examine the frost heaving of a road in a field study and to evaluate the reliability of two different models for estimation of frost heaving. The studied models are the current one of the Swedish Transport Administration, which is implemented in their road design tool PMS Objekt, and the segregation potential theory. The studied road section is located in Kiruna, in the northern part of Sweden. The road has been cored and the unbound layers of it, including the subgrade, have been analyzed in laboratory. These analyses include both geotechnical characterization and one-dimensional frost heave tests of the subgrade material. The frost susceptibility of the collected material has been classified according to both the Swedish Transport Administrations system and the American USACE’s system. All samples, including the subgrade, consist mainly of gravel and sand. According to both the used classification systems all samples are classified as not frost susceptible. However, the elevation measurements of the road show that frost heaving occurs in it despite this. This heaving has not been possible to model successfully in the program PMS Objekt. In it the frost heave prediction yields no heave at all, despite applying a design winter (worst case) in the analysis. A good conformity has however been observed between back-calculated and empirically evaluated frost susceptibility using segregation potential theory. A quite good conformity has also been observed when the same thing is evaluated from the preformed freeze tests. The most important finding of the study is that even material that is categorized as non-frost susceptible according to the two studied systems actually does heave. This finding includes both subgrade aswell as the unbound material in the superstructure. It has been found that the total frost heave observed in this study originates mainly from primary heaving, meaning the studied systems are quite correct in their frost susceptibility classification if only secondary heaving is intended. The study has also shown that the current model applied in PMS Objekt is poor in predicting the amount of heaving in coarse subgrades. Finally, the study has also shown the possibility to evaluate a soils frost susceptibility using segregation potential theory, although this model aswell is only applicable to secondary heave
12

Laboratory Investigations of Frost Action Mechanisms in Soils

Dagli, Deniz January 2017 (has links)
Phase change of the water in the soil skeleton under cold climate conditions (also known as frost action in soils) affects soil properties and can be responsible for serious alterations in a soil body; causing damages (due to the volumetric expansion known as frost heave) to structures on or below the ground surface such as foundations, roads, railways, retaining walls and pipelines, etc. In order to improve the current design methods for roads against frost action, the Swedish Transport Administration (Trafikverket) has initiated a research program. The main goals of the program are to revise the existing frost heave estimation methods and improve the frost susceptibility classification system for subgrade soils. Literature was reviewed to gather the details of different freezing test equipment around the world and to identify common trends and practices for laboratory freezing tests. Based on the literature review and the collaboration with the University of Oulu, Finland an experimental apparatus was assembled for studying frost action in the laboratory. A detailed description of the experimental apparatus is given. Top to down freezing of specimens (of 10cm height and diameter) can be monitored while keeping track of water intake, vertical displacements (heave) and the temperature profile within the sample. Loads can be applied at the top of the sample to study the effects of overburden. Moreover, the test setup was modified with a camera system to have the option of recording the experiments. Disturbed samples of two different soil types were tested. Experiments with fixed and varying temperature boundary conditions were conducted to assess the validity of the assumptions for the frost heave estimation methods currently in use in Sweden. To this end, a qualitative relationship between frost heave and heat extraction rates based on theoretical equations was established. It was shown that there is a significant difference between the preliminary findings of the experimental work and the current system being used in Sweden to quantify heave. Image analysis techniques were used on two experiments that were recorded by the camera system. Image recording and correlation analyses provided detailed information about frost front penetration and ice lens formation(s) under varying temperature boundary conditions. Thawing has also been regarded in further studies. Results of the image analyses were compared to readings from conventional displacement measurements during the same test. Significant agreement between the results of image analyses and displacement measurements has been found. Image analysis was shown to be a viable method in further understanding of frost heave mechanisms. Shortcomings and disadvantages of utilizing the theoretical equations as well as the image analysis techniques were discussed. Potential remedies for overcoming the drawbacks associated with each approach are suggested. The work is concluded by discussing the potential improvements, planned upgrades (addition of pore pressure transducers) and the future experiments to be conducted.
13

Water Vapor Movement in Freezing Aggregate Base Materials

Rogers, Maile Anne 18 December 2013 (has links)
The objectives of this research were to 1) measure the extent to which water vapor movement results in water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement in freezing base materials; 3) determine if the corresponding changes in water content are sufficient to cause frost heave during winter; 4) determine if the corresponding changes in water content are sufficient to cause reductions in stiffness during spring; 5) evaluate relationships between selected material properties, freezing conditions, and the occurrence and impact of water vapor movement; and 6) numerically simulate heat and water movement in selected pavement design scenarios. The research involved extensive laboratory and field testing, statistical analyses, and numerical modeling. The results of the laboratory testing, which included gradations, Atterberg limits, soil classifications, specific gravity and absorption values, electrical conductivity values, moisture-density relationships, soil-water characteristic curves, moisture-stiffness curves, hydraulic conductivity values, and frost susceptibility assessments, were used to characterize each material and enable subsequent statistical analyses. Testing of both treated and untreated materials enabled investigation of a wide variety of material properties. The results of the field testing, which included temperature, moisture content, water potential, elevation, and stiffness data over time, provided the basis for comparing pavement sections with and without capillary barriers and established the framework for numerical modeling. In a pavement section with a capillary barrier underlying the base layer, water vapor movement from the subgrade through the capillary barrier may be expected to increase the water content of the base layer by 1 to 3 percent during a typical winter season in northern Utah for base materials similar to those studied in this research. During winter, cold temperatures create an ideal environment for water vapor to travel upward from the warm subgrade soil below the frost line, through the capillary barrier, and into the base material. Soil stabilization can lead to increased or decreased amounts of water vapor movement in freezing base materials depending on the properties of the stabilized soil, which may be affected by gradation, mineralogy, and stabilizer type and concentration. Accumulation of water from long-term water vapor movement into frost-susceptible base materials underlain by a capillary barrier can lead to frost heave of the base layer as it approaches saturation, as water available in the layer can be redistributed upwards to create ice lenses upon freezing. However, the incremental increase in total water content that may occur exclusively from water vapor movement during a single winter season in northern Utah would not be expected to cause measurable increases in thaw weakening of the base layer during spring. Because water in a base layer overlying a capillary barrier cannot drain until nearly reaching positive pore pressures, the base layer will remain indefinitely saturated or nearly saturated as demonstrated in this research. For materials similar to those studied in this research, potentially important material properties related to the occurrence of water vapor movement during freezing include dry density, percent of material finer than the No. 200 sieve, percent of material finer than 0.02 mm, apparent specific gravity, absorption, initial water content, porosity, degree of saturation, hydraulic conductivity, and electrical conductivity. The rate at which water vapor movement occurs is also dependent on the thermal gradient within the given material, where higher thermal gradients are associated with higher amounts of water vapor movement. The numerical modeling supported the field observations that the capillary barrier effectively trapped moisture in the overlying base material, causing it to remain saturated or nearly saturated throughout the monitoring period. Only non-frost-susceptible aggregate base materials should be specified for use in cold climates in conjunction with capillary barriers, and the base material in this case should be assumed to remain in a saturated or nearly saturated condition during the entire service life of the pavement. Further study is recommended on water vapor movement in freezing aggregate base materials.
14

Laboratory Investigations of Frost Action Mechanisms in Soils

Dagli, Deniz January 2017 (has links)
Phase change of the water in the soil skeleton under cold climate conditions (also known as frost action in soils) affects soil properties and can be responsible for serious alterations in a soil body; causing damages (due to the volumetric expansion known as frost heave) to structures on or below the ground surface such as foundations, roads, railways, retaining walls and pipelines, etc. In order to improve the current design methods for roads against frost action, the Swedish Transport Administration (Trafikverket) has initiated a research program. The main goals of the program are to revise the existing frost heave estimation methods and improve the frost susceptibility classification system for subgrade soils. Literature was reviewed to gather the details of different freezing test equipment around the world and to identify common trends and practices for laboratory freezing tests. Based on the literature review and the collaboration with the University of Oulu, Finland an experimental apparatus was assembled for studying frost action in the laboratory. A detailed description of the experimental apparatus is given. Top to down freezing of specimens (of 10cm height and diameter) can be monitored while keeping track of water intake, vertical displacements (heave) and the temperature profile within the sample. Loads can be applied at the top of the sample to study the effects of overburden. Moreover, the test setup was modified with a camera system to have the option of recording the experiments. Disturbed samples of two different soil types were tested. Experiments with fixed and varying temperature boundary conditions were conducted to assess the validity of the assumptions for the frost heave estimation methods currently in use in Sweden. To this end, a qualitative relationship between frost heave and heat extraction rates based on theoretical equations was established. It was shown that there is a significant difference between the preliminary findings of the experimental work and the current system being used in Sweden to quantify heave. Image analysis techniques were used on two experiments that were recorded by the camera system. Image recording and correlation analyses provided detailed information about frost front penetration and ice lens formation(s) under varying temperature boundary conditions. Thawing has also been regarded in further studies. Results of the image analyses were compared to readings from conventional displacement measurements during the same test. Significant agreement between the results of image analyses and displacement measurements has been found. Image analysis was shown to be a viable method in further understanding of frost heave mechanisms. Shortcomings and disadvantages of utilizing the theoretical equations as well as the image analysis techniques were discussed. Potential remedies for overcoming the drawbacks associated with each approach are suggested. The work is concluded by discussing the potential improvements, planned upgrades (addition of pore pressure transducers) and the future experiments to be conducted. / Modellering av tjällossningsförlopp vid vägdimensionering
15

Design and Construction of Pavements in Cold Regions: State of the Practice

Smith, Brad Steven 07 December 2006 (has links) (PDF)
The effects of frost action introduce many challenges in the design and construction of roadways in cold regions throughout the United States. The penetration of frost into pavement structures can lead to differential frost heave during winter and thaw weakening during spring. Both of these damage mechanisms lead to premature pavement distress, structural deterioration, and poor ride quality. Because the availability of naturally occurring non-frost-susceptible pavement base materials is rapidly diminishing in many areas while project budgets remain largely inadequate, pavement engineers are utilizing alternative materials and techniques to minimize such damage. The purpose of this research was to investigate and document the state of the practice concerning the design and construction of pavements in cold regions. In particular, the various methods and standards employed for characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses were explored. A comprehensive literature review was performed, and a questionnaire survey was conducted of various state DOTs throughout the United States that are involved with the design and maintenance of roadways. The study was directed primarily at identifying practices utilized by state DOTs in climates with freezing temperatures. The information obtained in this research represents a unique compilation of standards of practice that have been developed by DOTs based on years of experience and research in their respective jurisdictions. While this research allows engineers at state DOTs to compare their pavement design and construction practices with those of other states represented in the survey, consulting engineers and engineers in local governments involved in characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses can also benefit from this work.
16

Effects of Thermal Gradient and Fines Content on Frost Heave of an Alaska Base Material

Homewood, Adam Ray 08 October 2010 (has links) (PDF)
The objective of this research was to investigate the effects of thermal gradient and fines content and the interaction between these two factors on the frost heave characteristics of a typical Alaska base material. The laboratory frost heave testing involved one type of aggregate base material, three thermal gradients, and three fines contents in a full-factorial experimental design with two replicates. The aggregate was classified in the American Association of State Highway and Transportation Officials soil classification system as A-1-a; the thermal gradients were 0.15, 0.30, and 0.45 ºC/cm; and the fines contents were 6, 8, and 10 percent. After frost heave testing, a stepwise regression analysis was performed to identify significant independent variables for each of nine separate dependent variables, including frost heave, heave-uptake ratio, steady-state frost heave rate, gravimetric water ingress, and gravimetric water content in each of the five individual lifts tested following frost heave testing. Soil suction, specific gravity, salinity, and hydraulic conductivity testing were also performed on samples prepared at each of the three fines contents to support numerical modeling of the frost heave test results using the computer program ICE-1. The results of the stepwise regression analysis indicate that thermal gradient is a significant predictor of six of the nine dependent variables and that the square of thermal gradient is a significant predictor of five of these six dependent variables. As the thermal gradient increased, the samples experienced decreasing amounts of water ingress and frost heave. However, the data show that neither fines content nor the square of fines content is a significant predictor of any of the dependent variables. Thus, although previous research has shown that higher fines contents are generally associated with greater susceptibility to frost heave, this effect is not manifest in the comparatively small increases in fines contents evaluated in this research. The interaction between thermal gradient and fines content is a significant predictor of only one independent variable. Differences between the modeled and measured frost heave values ranged from 0.01 to 0.92 cm, with the larger differences typically associated with the lowest thermal gradient and the lowest fines content.
17

Namrzavost upravených zemin v podloží vozovky / Frost susceptibility of improved soils to pavement subgrade

Lorenc, Daniel January 2018 (has links)
This diploma thesis deals with the issue of the effect of freezing on soils in subgrades of road structures. The theoretical part compares methods of determining the frost susceptibility of soils used in selected countries of the European Union and the Czech Republic. It also explains the principle of frost heave in subgrade layers. The aim of the practical part is to compare the direct and indirect method of determining frost susceptibility in the Czech Republic and the California bearing ration CBR or the immediate bearing ratio IBI.
18

Namrzavost zemin a druhotných materiálů v podloží vozovek / Frost susceptibility of soils and waste materials to pavement subgrade

Sokolová, Veronika January 2015 (has links)
Destruction of road constructions due to the frost is in locations with temperatures under the zero a problem which leads to permanent deformation. The theoretical part of this thesis deals with the freezing process of the pavement and its subgrade. It presents methods for determining the rate of frost susceptibility in both the Czech Republic and abroad. Describes the materials used in the subgrade of roads and their suitability in terms of frost susceptibility. The thesis closely examines the fly-ashes, their properties and possibilities of using in the construction industry. The practical part of the thesis focuses on the performance of direct laboratory frost heave tests, immediate bearing index tests, California bearing ratio tests and cyclic load triaxial tests to determine the modulus of elasticity. Tests are carried out on the soil, the soil mixtures with certain percentages of fly ash from different sources at the same soil treated with lime. Then the results are compared and dependence between the measured characteristics of materials is created.
19

Stabilisation des sols traités à la chaux et leur comportement au gel / Stabilization of lime treated soils and their behaviour under frost

Nguyen, Thi Thanh Hang 21 April 2015 (has links)
On s'intéresse dans le présent travail au comportement au gel des sols fins limono-argileux traités à la chaux seule, sols valorisables qui sont couramment rencontrés sur les chantiers de terrassement. Trois sols appartenant aux classifications A1, A2, A3 selon la norme NF P 11300, ont été choisis pour cette étude. Ces sols sont traités à 3 dosages en chaux correspondant à 3 objectifs : 1) amélioration (dosage en chaux minimal), 2) stabilisation et insensibilité à l'eau (dosage en chaux intermédiaire), 3) stabilisation et résistance au gel (dosage en chaux le plus élevé). Les sols traités sont ensuite conservés pendant quatre périodes de cure : 7 jours, 28 jours, 90 jours et 365 jours. Les deux processus de gel - le géligonflement et la gélifraction sont étudiés, parallèlement à l'évaluation des performances mécaniques, hydrauliques et microstructurales. Les résultats expérimentaux ont montré que les propriétés hydrauliques (la succion au front de gel, sp et la conductivité hydraulique à l'état non-saturé, kunsat) sont les paramètres qui gouvernent le phénomène de géligonflement des sols, traités ou non. Les résultats ont également mis en évidence le lien direct existant entre la microstructure (la distribution porale) et les propriétés hydrauliques du sol, principalement en termes de capacité de rétention d'eau et conductivité hydraulique. Le traitement augmente les performances mécaniques des sols d'une part, et amène d'autre part à des modifications de leur microstructure ; ceci induit des changements vis-à-vis de leur sensibilité au gel. Les sols sont plus gélifs directement après le traitement, cette sensibilité au gel diminuant avec le temps de cure. Une modélisation simple permettant d'estimer le gonflement au gel à partir de la succion au front de gel et de la valeur de conductivité hydraulique à l'état non-saturé a été proposée et validée. Vu que la détermination de la conductivité hydraulique à l'état non-saturé n'est pas un essai couramment pratiqué au sein de la plupart des laboratoires, un critère basé sur la succion au front de gel, sp, et la conductivité hydraulique à l'état saturé, ksat a été proposé pour évaluer la sensibilité des sols au gel. L'essai de gélifraction consiste à évaluer un coefficient de résistance de l'éprouvette de sol après 10 cycles de gel/dégel, RFT (%) - « retained strength factor after freeze-thaw testing ». Les résultats expérimentaux montrent que la valeur RFT des sols traités varie de 0% (lorsque les éprouvettes de sol perdent totalement leur résistance à la compression simple et sont détruites après 10 cycles de gel/dégel) à 90%. Quand RFT ≥ 60%, aucune dégradation visuelle de la surface des éprouvettes des sols traités n'est constatée. Ainsi, cette valeur est proposée comme critère d'acceptation des matériaux constitutifs d'une couche de forme subissant le gel avant son recouvrement. L'étude de l'effet du nombre des cycles de gel/dégel montre une diminution importante de la performance mécanique (RFT) durant trois premiers cycles de gel/dégel, et ce paramètre se stabilisant après 10 cycles. A l'aide de la technique de µ Tomographie X, l'endommagement interne des éprouvettes de sol ayant subi des cycles de gel/dégel a été quantifié. Une corrélation directe entre la diminution de performance mécanique et l'augmentation de l'indice de l'endommagement de l'éprouvette a été mise en évidence. Enfin, un modèle d'endommagement permettant d'évaluer la dégradation de la performance mécanique avec l'augmentation de l'indice d'endommagement a été établi / The present work deals with the behaviour of fine-grained silty and clayey soils treated with lime under frost. Those soils are frequently encountered in earthworks. Three soils corresponding to A1, A2, A3 classes according French NF P 11-300 standard were chosen for this study. These soils were treated with 3 lime dosages corresponding to three objectives: 1) improvement (minimum dosage), 2) stabilization and insensitivity to water (intermediate dosage), 3) stabilization and frost resistance (highest dosage). Lime-treated soils were subsequently cured for different times: 7, 28, 90, 365 days. Two frost processes, frost heave and freeze-thaw cycles, were applied in parallel with the assessment of mechanical, hydraulic and microstructural properties. Experimental results evidenced that it is the hydraulic properties (suction at frost front, sp and unsaturated hydraulic conductivity, kunsat) that govern the frost heave phenomenon of soils, treated or not. In addition, this study demonstrates the direct link between the microstructure (the pore size distribution) and the hydraulic properties (water retention curve and hydraulic conductivity). The treatment on one hand improves the mechanical performances of soils, and on the other hand modify their microstructure, and thus changes their frost sensitivity. The frost susceptibility increases directly after treatment, and then decreases with curing time. Based on the suction at frost front and the unsaturated hydraulic conductivity, a simple model was proposed and validated allowing to estimate the frost heave. Considering that the determination of unsaturated hydraulic conductivity is not a test commonly performed by most laboratories, a criterion based on the suction at frost front and the saturated hydraulic conductivity was proposed to estimate the frost sensibility of soils. The second frost resistance test consists of measuring the retained strength factor after 10 freeze-thaw cycles, RFT (%). The results obtained show that RFT of lime treated soil varies from 0% (when soil specimen completely loses its resistance and collapses after 10 freezethaw cycles) to 90%. When RFT is higher than 60%, no visual damage was observed on the specimen surface; consequently, this value is proposed as a criterion for acceptance of lime treated soil in capping layer before covering. In addition, the study of effect of freeze-thaw cycles showed a significant decrease of mechanical performance (RFT) during the first three cycles, and a stabilization after 10 cycles. Using X-ray Tomography, the intern damage of specimens due to freeze-thaw cycles was quantified. A correlation between the decrease of mechanical performance and the increase of damage index was evidenced. A model was then developed to evaluate the degradation of mechanical performance with the increase of damage index
20

Stabilisation des sols traités à la chaux et leur comportement au gel / Stabilization of lime treated soils and their behaviour under frost

Nguyen, Thi Thanh Hang 21 April 2015 (has links)
On s'intéresse dans le présent travail au comportement au gel des sols fins limono-argileux traités à la chaux seule, sols valorisables qui sont couramment rencontrés sur les chantiers de terrassement. Trois sols appartenant aux classifications A1, A2, A3 selon la norme NF P 11300, ont été choisis pour cette étude. Ces sols sont traités à 3 dosages en chaux correspondant à 3 objectifs : 1) amélioration (dosage en chaux minimal), 2) stabilisation et insensibilité à l'eau (dosage en chaux intermédiaire), 3) stabilisation et résistance au gel (dosage en chaux le plus élevé). Les sols traités sont ensuite conservés pendant quatre périodes de cure : 7 jours, 28 jours, 90 jours et 365 jours. Les deux processus de gel - le géligonflement et la gélifraction sont étudiés, parallèlement à l'évaluation des performances mécaniques, hydrauliques et microstructurales. Les résultats expérimentaux ont montré que les propriétés hydrauliques (la succion au front de gel, sp et la conductivité hydraulique à l'état non-saturé, kunsat) sont les paramètres qui gouvernent le phénomène de géligonflement des sols, traités ou non. Les résultats ont également mis en évidence le lien direct existant entre la microstructure (la distribution porale) et les propriétés hydrauliques du sol, principalement en termes de capacité de rétention d'eau et conductivité hydraulique. Le traitement augmente les performances mécaniques des sols d'une part, et amène d'autre part à des modifications de leur microstructure ; ceci induit des changements vis-à-vis de leur sensibilité au gel. Les sols sont plus gélifs directement après le traitement, cette sensibilité au gel diminuant avec le temps de cure. Une modélisation simple permettant d'estimer le gonflement au gel à partir de la succion au front de gel et de la valeur de conductivité hydraulique à l'état non-saturé a été proposée et validée. Vu que la détermination de la conductivité hydraulique à l'état non-saturé n'est pas un essai couramment pratiqué au sein de la plupart des laboratoires, un critère basé sur la succion au front de gel, sp, et la conductivité hydraulique à l'état saturé, ksat a été proposé pour évaluer la sensibilité des sols au gel. L'essai de gélifraction consiste à évaluer un coefficient de résistance de l'éprouvette de sol après 10 cycles de gel/dégel, RFT (%) - « retained strength factor after freeze-thaw testing ». Les résultats expérimentaux montrent que la valeur RFT des sols traités varie de 0% (lorsque les éprouvettes de sol perdent totalement leur résistance à la compression simple et sont détruites après 10 cycles de gel/dégel) à 90%. Quand RFT ≥ 60%, aucune dégradation visuelle de la surface des éprouvettes des sols traités n'est constatée. Ainsi, cette valeur est proposée comme critère d'acceptation des matériaux constitutifs d'une couche de forme subissant le gel avant son recouvrement. L'étude de l'effet du nombre des cycles de gel/dégel montre une diminution importante de la performance mécanique (RFT) durant trois premiers cycles de gel/dégel, et ce paramètre se stabilisant après 10 cycles. A l'aide de la technique de µ Tomographie X, l'endommagement interne des éprouvettes de sol ayant subi des cycles de gel/dégel a été quantifié. Une corrélation directe entre la diminution de performance mécanique et l'augmentation de l'indice de l'endommagement de l'éprouvette a été mise en évidence. Enfin, un modèle d'endommagement permettant d'évaluer la dégradation de la performance mécanique avec l'augmentation de l'indice d'endommagement a été établi / The present work deals with the behaviour of fine-grained silty and clayey soils treated with lime under frost. Those soils are frequently encountered in earthworks. Three soils corresponding to A1, A2, A3 classes according French NF P 11-300 standard were chosen for this study. These soils were treated with 3 lime dosages corresponding to three objectives: 1) improvement (minimum dosage), 2) stabilization and insensitivity to water (intermediate dosage), 3) stabilization and frost resistance (highest dosage). Lime-treated soils were subsequently cured for different times: 7, 28, 90, 365 days. Two frost processes, frost heave and freeze-thaw cycles, were applied in parallel with the assessment of mechanical, hydraulic and microstructural properties. Experimental results evidenced that it is the hydraulic properties (suction at frost front, sp and unsaturated hydraulic conductivity, kunsat) that govern the frost heave phenomenon of soils, treated or not. In addition, this study demonstrates the direct link between the microstructure (the pore size distribution) and the hydraulic properties (water retention curve and hydraulic conductivity). The treatment on one hand improves the mechanical performances of soils, and on the other hand modify their microstructure, and thus changes their frost sensitivity. The frost susceptibility increases directly after treatment, and then decreases with curing time. Based on the suction at frost front and the unsaturated hydraulic conductivity, a simple model was proposed and validated allowing to estimate the frost heave. Considering that the determination of unsaturated hydraulic conductivity is not a test commonly performed by most laboratories, a criterion based on the suction at frost front and the saturated hydraulic conductivity was proposed to estimate the frost sensibility of soils. The second frost resistance test consists of measuring the retained strength factor after 10 freeze-thaw cycles, RFT (%). The results obtained show that RFT of lime treated soil varies from 0% (when soil specimen completely loses its resistance and collapses after 10 freezethaw cycles) to 90%. When RFT is higher than 60%, no visual damage was observed on the specimen surface; consequently, this value is proposed as a criterion for acceptance of lime treated soil in capping layer before covering. In addition, the study of effect of freeze-thaw cycles showed a significant decrease of mechanical performance (RFT) during the first three cycles, and a stabilization after 10 cycles. Using X-ray Tomography, the intern damage of specimens due to freeze-thaw cycles was quantified. A correlation between the decrease of mechanical performance and the increase of damage index was evidenced. A model was then developed to evaluate the degradation of mechanical performance with the increase of damage index

Page generated in 0.0577 seconds