• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • Tagged with
  • 217
  • 217
  • 217
  • 215
  • 35
  • 29
  • 26
  • 20
  • 19
  • 19
  • 19
  • 16
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Population Dynamics of Pecan Aphids and Their Green Lacewing Predators in Insecticide-Free Pecans

Hunter, Martha, Petersen, Mette, McElween, Melinda, Kilby, Michael 10 1900 (has links)
Field surveys of aphids and their natural enemies were conducted in a 30 acre unsprayed block of 'Wichita' pecans in Southeastern Arizona (FICO, Sahuarita) during the growing seasons of 1997, 1998, and 1999. Each season showed a different pattern of aphid population development. In general, numbers of the more damaging black pecan aphid, Melanocallis caryaefoliae were always lower than those of the blackmargined pecan aphid Monellia caryella and no serious aphid damage by either species was observed. Two species of green lacewings were the dominant natural enemies in the orchard, and eggs could be found throughout the season.
212

Evaluation of Temik (aldicarb) for the Control of the Pecan Aphid Complex for Pecans Grown in Arizona

Kilby, Michael W. 10 1900 (has links)
This experiment was conducted to extend the label for Temik use in Arizona pecan orchards for aphid control. Spring application of Temik controlled both yellow and black aphids throughout the season and significantly increased yield.
213

Studies of the Biology and Control of Brown Heartwood Rot on Lemon Trees in 2000

Matheron, Michael E., Porchas, Martin 02 1900 (has links)
Brown heartwood rot is commonly found in mature lemon groves in southwestern Arizona. Two basidiomycete fungi, Antrodia sinuosa and Coniophora eremophila, have been isolated from symptomatic trees. Similarities between the two pathogens include the following: each fungus grows optimally at 30 to 35°C, neither organism produces a fleshy fruiting body, they colonize lemon trees primarily through branch fractures and other non-pruning wounds, and both cause a brown wood rot in infected trees. A major difference between the two pathogens is that Antrodia forms spore-producing fruiting bodies on infected wood within lemon groves, whereas fruiting on lemon wood infected by Coniophora has not been observed. The rate of wood decay in lemon branches inoculated with Antrodia is at least three times greater than that caused by Coniophora. Wood decay columns produced by either fungus from late spring to early autumn were at least three times larger than those that developed from late autumn to early spring. When inoculated with either pathogen, the length of wood decay columns on branches 10 mm in diameter was numerically smaller than those on branches 20 and 40 mm in diameter. Wood decay on Lisbon lemon branches inoculated with either Antrodia or Coniophora was significantly greater than that on Marsh grapefruit, Orlando tangelo, and Valencia orange. Treatment of lemon branch inoculation sites with azoxystrobin or propiconazole at 20 g of active ingredient per liter of solution reduced the resultant length of wood decay columns by 61 and 77%, respectively, for Antrodia, and 92 and 85%, respectively, for Coniophora. When selected desert plants were inoculated, Antrodia produced wood decay columns on Palo Verde, salt cedar, greasewood, and mesquite branches that were much shorter than those recorded on Lisbon lemon branches. On the other hand, Coniophora produced longer wood decay columns on salt cedar and mesquite than on Lisbon lemon, whereas wood rot on lemon was greater than that on Palo Verde and greasewood. Current disease management strategies include minimizing branch fractures and other non-pruning wounds, and periodic inspection of trees and removal of infected branches, including physical removal of all wood infected with Antrodia from the grove site.
214

Development of Best Management Practices for Fertigation of Young Citrus Tree

Thompson, Thomas L., White, Scott A., Walworth, James, Sower, Greg 02 1900 (has links)
'Newhall' navel oranges on 'Carrizo' rootstock were planted in Mar. 1997 at the Citrus Agricultural Center. The objectives of this experiment were: i) to determine the effects of N rate and fertigation frequency for microsprinkler-irrigated navel oranges on tree N status, and crop yield and quality; and ii) to develop Best Management Practices which promote optimum tree growth and production while minimizing nitrate leaching. The trees are equipped with a microsprinkler irrigation system. The experiment is a randomized complete block factorial with N rates of 0, 0.15, 0.30, and 0.45 lb N/tree/year, and fertigation frequencies of weekly, monthly, and three times per year. Unfertilized control trees are also included in the experimental design. Each of the ten treatments is replicated five times. The trees were harvested for the first time in Feb. 2001. Fruit were processed through an automatic fruit sizer, and fruit from each plot were further evaluated for fruit quality. Although unfertilized control trees had lower leaf N content than fertilized trees, fruit yield and quality of controls was no lower than fertilized trees. Similarly, there were few statistically significant differences in fruit yield and quality between trees receiving different N rates and fertigation frequencies.
215

Effect of fungicide treatments on incidence of powdery mildew of pecan and on pecan nut quality

Olsen, M., Rasmussen, S., Nischwitz, C. 02 1900 (has links)
Powdery mildew of pecan, caused by Microsphaera ulni, was observed on pecan shucks by the latter part of June 2000 in a commercial pecan orchard near Sahuarita, Arizona. Results of 1999 studies indicated that infection does not reduce nut quality. In order to determine effects of fungicide treatments and to substantiate results from 1999, preventive applications of micronized sulfur and azoxystrobin were initiated on June 8, 2000 in selected clusters in both Wichita and Western varieties. Trials were established in plots that had a high incidence of powdery mildew in 1999. Whole nut weights, kernel weights, or color ratings were not significantly different among clusters of nuts that were treated with fungicides and untreated nuts that were infected with powdery mildew. Percent disease incidence was 100% in untreated clusters, 0% in clusters treated with azoxystrobin every two weeks, and 5.3% (Wichita) and 8.8% (Western) in clusters treated with sulfur three times early in the season. Results indicate that disease did not affect nut weight or quality and that early preventive fungicide treatments are effective in controlling infections.
216

Foliar applications of Lo-Biuret Urea and Potassium Phosphite to Navel Orange Trees

Wright, Glenn, Walworth, James 02 1900 (has links)
This experiment was established in January 2000 in a block of 'Washington' navel orange trees at Verde Growers, Stanfield, AZ. Treatments included: normal grower practice, winter low biuret (LB) urea application, summer LB urea application, winter LB urea application plus winter and spring potassium phosphite, winter LB urea application plus summer potassium phosphite, and normal grower practice plus spring potassium phosphite. Each treatment was applied to approximately four acres of trees. For 2000-01, yields ranged from 40 to 45 lbs. per tree, and there was no effect of treatments upon total yield. There was a slight effect upon fruit size and grade. Trees subject to summer LB urea application had significantly more fruit of size 56, compared to trees subject to winter LB urea, and untreated, and untreated trees had significantly more fruit of size 88 than did treated trees. Also, treated trees had slightly more fruit in the fancy grade than did untreated trees.
217

Effects of fluid nitrogen fertigation and rate on microsprinkler irrigated grapefruit

Thompson, Thomas L., Maurer, Michael A., Weinert, Tom L. 11 1900 (has links)
Microsprinkler irrigation offers excellent flexibility for site-specific management of water and nitrogen inputs for citrus orchards in the southwestern United States. Escalating water costs, declining water availability, and increasing regulation of nitrogen (N) fertilizer use are causing growers to adopt practices to improve water and N use efficiency. A three-year field experiment was initiated in the spring of 1996 on six-year-old pink grapefruit trees at the University of Arizona Citrus Agricultural Center. The objectives of this experiment are to i) evaluate the effects of fertigation frequency and fluid N application rate on the yield and fruit quality of microsprinkler irrigated grapefruit, and ii) develop best management guidelines for fluid N application frequency and rate for microsprinkler irrigated citrus. Treatments include a factorial combination of two N rates (recommended and 2 the recommended rate) and three fertigation frequencies (weekly, monthly, and tri-monthly). Minimal treatment effects were observed during the first season due to the influence of previous management practices. During the second season, fertilized trees yielded greater than the control trees. There was no significant difference between N rates, but fruit yield was generally higher with monthly or weekly fertigation. Leaf tissue samples collected during the second and third growing seasons showed increasing leaf N with increasing fertigation frequency at the high N rate.

Page generated in 0.035 seconds