• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biodiesel production from fryer grease

Issariyakul, Titipong 19 June 2006
Biodiesel is a renewable, biodegradable, environmentally benign fuel for use in the diesel engines. It can be produced from renewable sources such as vegetable oils or animal fats. Although this fuel has gained worldwide recognition for many years, it is not being widely commercialized mainly because it is more expensive than petroleum diesel. A cheaper feedstock, such as fryer grease, may be used to improve the economics of biodiesel. <p>Methanol is the most common alcohol used in the transesterification process due to its low cost. However, recently, ethanol has been promoted as an alcohol for use in transesterification since it can be produced from renewable resources such as switchgrass, corn and wood, thereby reducing the dependency on petroleum sources (Pimentel and Patzek, 2005). A mixture of methanol and ethanol is hypothesized to take the advantages of both methanol and ethanol. The present work is focused on the production of biodiesel from fryer grease via transesterification with various mixtures of methanol and ethanol. Also, the kinetics of transesterification from fryer grease was studied. <p> Since fryer grease contains a high concentration of free fatty acids (FFA) (5.6 wt. %) and water (7.3 wt. %), a two-step acid/alkaline transesterification process was used to produce the esters. Sulfuric acid and potassium hydroxide were used as acid and alkaline catalysts, respectively. The methanol to ethanol molar ratio was varied from 3:3 to 5:1, whereas alcohol to oil molar ratio was maintained at 6:1. After the fryer grease was transesterified, all esters met ASTM standard D-6751. The viscosity of these esters ranged from 4.7 to 5.9 mm2/s. The heating value of the esters was approximately 10% less than that of petroleum diesel. The cloud point and pour point were in the range of 1 to -1 oC and -3 to -6 oC, respectively. When the mixed alcohol was used ethyl esters were also formed at a lower concentration along with methyl esters. The dominant fatty acid in fryer grease esters was found to be oleic acid. The lubricity of kerosene fuel was improved by as much as 33 % through the addition of these esters at rates as low as 1 %. <p>For the kinetic study of alkali-catalyzed transesterification of fryer grease, the alcohol to oil molar ratio, the reaction temperature, and the catalyst loading were varied as 6:1, 9:1, 12:1; 30, 40, 50 oC; and 0.5, 1.0, 1.5 %, respectively. The ester concentration was found to rise with an increase in the catalyst loading or the reaction temperature and with a decrease in the alcohol to oil molar ratio. The overall forward and backward reaction orders were assumed to follow first and second order kinetics, respectively. The kinetic parameters were calculated using MATLAB. The conversion of triglyceride to diglyceride was found to be the rate determining step (RDS) of the overall reaction, with an activation energy of 36.9 kJ/mol.
2

Biodiesel production from fryer grease

Issariyakul, Titipong 19 June 2006 (has links)
Biodiesel is a renewable, biodegradable, environmentally benign fuel for use in the diesel engines. It can be produced from renewable sources such as vegetable oils or animal fats. Although this fuel has gained worldwide recognition for many years, it is not being widely commercialized mainly because it is more expensive than petroleum diesel. A cheaper feedstock, such as fryer grease, may be used to improve the economics of biodiesel. <p>Methanol is the most common alcohol used in the transesterification process due to its low cost. However, recently, ethanol has been promoted as an alcohol for use in transesterification since it can be produced from renewable resources such as switchgrass, corn and wood, thereby reducing the dependency on petroleum sources (Pimentel and Patzek, 2005). A mixture of methanol and ethanol is hypothesized to take the advantages of both methanol and ethanol. The present work is focused on the production of biodiesel from fryer grease via transesterification with various mixtures of methanol and ethanol. Also, the kinetics of transesterification from fryer grease was studied. <p> Since fryer grease contains a high concentration of free fatty acids (FFA) (5.6 wt. %) and water (7.3 wt. %), a two-step acid/alkaline transesterification process was used to produce the esters. Sulfuric acid and potassium hydroxide were used as acid and alkaline catalysts, respectively. The methanol to ethanol molar ratio was varied from 3:3 to 5:1, whereas alcohol to oil molar ratio was maintained at 6:1. After the fryer grease was transesterified, all esters met ASTM standard D-6751. The viscosity of these esters ranged from 4.7 to 5.9 mm2/s. The heating value of the esters was approximately 10% less than that of petroleum diesel. The cloud point and pour point were in the range of 1 to -1 oC and -3 to -6 oC, respectively. When the mixed alcohol was used ethyl esters were also formed at a lower concentration along with methyl esters. The dominant fatty acid in fryer grease esters was found to be oleic acid. The lubricity of kerosene fuel was improved by as much as 33 % through the addition of these esters at rates as low as 1 %. <p>For the kinetic study of alkali-catalyzed transesterification of fryer grease, the alcohol to oil molar ratio, the reaction temperature, and the catalyst loading were varied as 6:1, 9:1, 12:1; 30, 40, 50 oC; and 0.5, 1.0, 1.5 %, respectively. The ester concentration was found to rise with an increase in the catalyst loading or the reaction temperature and with a decrease in the alcohol to oil molar ratio. The overall forward and backward reaction orders were assumed to follow first and second order kinetics, respectively. The kinetic parameters were calculated using MATLAB. The conversion of triglyceride to diglyceride was found to be the rate determining step (RDS) of the overall reaction, with an activation energy of 36.9 kJ/mol.

Page generated in 0.0455 seconds