• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of a methanol reformer for fuel cell vehicles

Lindström, Bård January 2003 (has links)
Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. The objective of the work presented in this thesiswas to develop a catalytic hydrogen generator for automotiveapplications using methanol as the hydrogen carrier. The first part of this work gives an introduction to thefield of methanol reforming and the properties of a fuel cellbased power system. Paper I reviews the catalytic materials andprocesses available for producing hydrogen from methanol. The second part of this thesis consists of an experimentalinvestigation of the influence of the catalyst composition,materials and process parameters on the activity andselectivity for the production of hydrogen from methanol. InPapers II-IV the influence of the support, carrier andoperational parameters is studied. In Paper V an investigationof the catalytic properties is performed in an attempt tocorrelate material properties with performance of differentcatalysts. In the third part of the thesis an investigation isperformed to elucidate whether it is possible to utilizeoxidation of liquid methanol as a heat source for an automotivereformer. In the study which is presented in Paper VI a largeseries of catalytic materials are tested and we were able tominimize the noble metal content making the system more costefficient. In the final part of this thesis the reformer prototypedeveloped in the project is evaluated. The reformer which wasconstructed for serving a 5 kWe fuel cell had a highperformance with near 100 % methanol conversion and COconcentrations below 1 vol% in the product stream. The resultsof this part are presented in Paper VII. <b>Keywords:</b>methanol, fuel cell, vehicle, catalyst,copper, hydrogen, on-board, steam reforming, partial oxidation,combined reforming, oxidative steam reforming, auto-thermalreforming, zinc, zirconium, chromium, aluminium oxide,manganese, characterization, temperature programmed reduction,X-ray diffraction, chemisorption, carbon monoxide, poisoning,reformer.
12

Development of a methanol reformer for fuel cell vehicles

Lindström, Bård January 2003 (has links)
<p>Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. The objective of the work presented in this thesiswas to develop a catalytic hydrogen generator for automotiveapplications using methanol as the hydrogen carrier.</p><p>The first part of this work gives an introduction to thefield of methanol reforming and the properties of a fuel cellbased power system. Paper I reviews the catalytic materials andprocesses available for producing hydrogen from methanol.</p><p>The second part of this thesis consists of an experimentalinvestigation of the influence of the catalyst composition,materials and process parameters on the activity andselectivity for the production of hydrogen from methanol. InPapers II-IV the influence of the support, carrier andoperational parameters is studied. In Paper V an investigationof the catalytic properties is performed in an attempt tocorrelate material properties with performance of differentcatalysts.</p><p>In the third part of the thesis an investigation isperformed to elucidate whether it is possible to utilizeoxidation of liquid methanol as a heat source for an automotivereformer. In the study which is presented in Paper VI a largeseries of catalytic materials are tested and we were able tominimize the noble metal content making the system more costefficient.</p><p>In the final part of this thesis the reformer prototypedeveloped in the project is evaluated. The reformer which wasconstructed for serving a 5 kWe fuel cell had a highperformance with near 100 % methanol conversion and COconcentrations below 1 vol% in the product stream. The resultsof this part are presented in Paper VII.</p><p><b>Keywords:</b>methanol, fuel cell, vehicle, catalyst,copper, hydrogen, on-board, steam reforming, partial oxidation,combined reforming, oxidative steam reforming, auto-thermalreforming, zinc, zirconium, chromium, aluminium oxide,manganese, characterization, temperature programmed reduction,X-ray diffraction, chemisorption, carbon monoxide, poisoning,reformer.</p>
13

Hydrogen applications for Lambert - St. Louis International Airport

Thomas, Mathew, January 2009 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed January 22, 2009) Includes bibliographical references (p. 53-55).
14

Infra-estrutura para uso energetico do hidrogenio : estações de abastecimento para veiculos com celulas a combustivel / Infrastructure for hydrogen energy use : fuelling stations for fuel cell vehicles

Ferreira, Paulo Fabricio Palhavam 13 August 2018 (has links)
Orientador: Ennio Peres da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-13T02:55:14Z (GMT). No. of bitstreams: 1 Ferreira_PauloFabricioPalhavam_D.pdf: 3151457 bytes, checksum: db3c498b322d05294acffaaed5b498df (MD5) Previous issue date: 2007 / Resumo: Neste trabalho realizou-se um estudo sobre a produção de hidrogênio eletrolítico em estações de abastecimento para o suprimento de uma frota hipotética de veículos utilizando células a combustível na cidade de São Paulo. Realizou-se uma projeção da frota de veículos leves para a cidade de São Paulo para o ano de 2020. Com base na frota projetada estimou-se o número de veículos utilizando células a combustível passíveis de serem abastecidos pelas estações de abastecimento. Utilizando um comparativo entre o número de estações de abastecimento de GNV, o número de veículos utilizando GNV e o custo de instalação dos postos de abastecimento de GNV estimou-se a capacidade de produção das estações de abastecimento de hidrogênio. Realizou-se o dimensionamento dos principais componentes da estação de abastecimento de hidrogênio dentro de três cenários. Utilizando os custos de investimento para a instalação das estações de abastecimento de hidrogênio nos três cenários calculou-se o custo de produção do hidrogênio e o custo do quilômetro rodado para os veículos utilizando células a combustível. Obteve-se como resultado um custo de produção do hidrogênio de 2,68 R$.m-3, 2,14 R$.m-3e 2,07 R$.m-3 para os cenários 1, 2 e 3 respectivamente e, de 0,32 R$.km-1, 0,25 R$.km-1e 0,24 R$.km-1 para o custo do quilômetro rodado. Realizou-se também um estudo do impacto da introdução da eletricidade utilizada para a produção do hidrogênio na composição da matriz energética do setor de transportes. / Abstract: In this work it was made a study about electrolytic hydrogen production in fuelling stations for supplying a hypothetical fleet of fuel cell vehicles in São Paulo city. A lightweight fleet projection for the year 2020 in São Paulo city was made. Based on the estimative fleet, the number of vehicles using fuel cells and able to be refueled on these fueling stations was calculated. The hydrogen fueling station production capacity was calculated using a comparison with the number of natural gas fueling stations, the number of natural gas vehicles and the investment amount necessary for a natural gas station implementation. The major system components were calculated in three scenarios. The hydrogen production costs for each scenario and the driving costs were calculated, achieving as results a hydrogen cost of 2,68 R$.m-3, 2,14 R$.m-3 and 2,07 R$.m-3and driving costs of 0,32 R$.km-1, 0,25 R$.km-1 and 0,24 R$.km-1. An impact study for the introduction of electricity in the transportation energy matrix due to the hydrogen production was also made. / Doutorado / Planejamento de Sistemas Energeticos / Doutor em Engenharia Mecânica
15

Trajectory optimization for fuel cell powered UAVs

Zhou, Min 13 January 2014 (has links)
This dissertation progressively addresses research problems related to the trajectory optimization for fuel cell powered UAVs, from propulsion system model development, to optimal trajectory analyses and optimal trajectory applications. A dynamic model of a fuel cell powered UAV propulsion system is derived by combining a fuel cell system dynamic model, an electric motor dynamic model, and a propeller performance model. The influence of the fuel cell system dynamics on the optimal trajectories of a fuel cell powered UAV is investigated in two phases. In the first phase, the optimal trajectories of a fuel cell powered configuration and that of a conventional gas powered configuration are compared for point-to-point trajectory optimization problems with different performance index functions. In the second phase, the influence of the fuel cell system parameters on the optimal fuel consumption cost of the minimum fuel point-to-point optimal trajectories is investigated. This dissertation also presents two applications for the minimum fuel point-to-point optimal trajectories of a fuel cell powered UAV: three-dimensional minimum fuel route planning and path generation, and fuel cell system size optimization with respect to a UAV mission.
16

Estação de produção e abastecimento de hidrogênio solar : análise técnica e econômica /

Micena, Raul Pereira January 2020 (has links)
Orientador: José Luz Silveira / Resumo: A utilização do hidrogênio como insumo energético para aplicações de transporte depende da disponibilização de alternativas renováveis para sua produção. Uma delas são as estações com eletrólise alimentada por uma planta solar fotovoltaica on-grid. Nesse trabalho, assume-se a substituição da atual frota de táxis da cidade brasileira Guaratinguetá-SP por veículos a célula-a-combustível. Para atender a demanda de hidrogênio dos veículos, é preciso produzir 170,24 kg de hidrogênio por dia. Esse hidrogênio deve ser fornecido comprimido a uma pressão de 87,5 MPa e a uma temperatura de -40°C, de acordo com norma vigente. Assim, propõe-se uma análise energética com o cálculo da energia necessária para produzir o gás por meio de uma planta fotovoltaica on-grid, bem como as perdas envolvidas. Também são calculadas energias e perdas relacionadas com a compressão e refrigeração do hidrogênio, bem como o volume dos tanques. Os resultados indicam uma necessidade de geração de 10.037 kWh por dia para atender todos os processos envolvidos na estação de abastecimento. Desse total, 56,53 % é entregue na forma de hidrogênio. Se for considerada a energia solar que incide diretamente sobre os painéis, esse percentual é de 9,33 %. A maior parte das perdas se concentra na conversão da irradiação solar em energia elétrica e na eletrólise da água, sendo estas as duas principais oportunidades para melhorias de eficiência. O custo do hidrogênio foi calculado em 16,197 US$/kg se produzido com energia s... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The use of hydrogen as an energy carrier for transport applications depends on the availability of renewable alternatives for its production. One of them is the electrolysis stations powered by a grid connected photovoltaic solar plant. In this work, it is assumed that the current taxi fleet in the Brazilian city of Guaratinguetá will be replaced by fuel cell vehicles. To meet the hydrogen demand of vehicles, it is necessary to produce 170.24 kg per day. This hydrogen must be supplied compressed at a pressure of 87.5 MPa and at a temperature of -40 °C, in accordance with current regulations. Thus, an energy analysis is proposed with the calculation of the energy required to produce the gas through a photovoltaic plant connected to the grid, as well as the losses involved. Energies and losses related to hydrogen compression and cooling are also calculated, as well as the volume of the tanks. The results indicate a need to generate 10,037 kWh per day to meet all the processes involved in the supply station. Of this total, 56.53 % is delivered in the form of hydrogen. If the incoming solar in the photovoltaic panels is considered, this percentage is 9.33 %. Most of the losses are concentrated in the conversion of solar irradiation into electrical energy and in the electrolysis of water, these being the two main opportunities for efficiency improvements. The cost of hydrogen was calculated at 16,197 US$/kg if produced with photovoltaic solar energy and at 20,812 US$/kg if produce... (Complete abstract click electronic access below) / Mestre
17

Environmental Systems Analysis of Waste Management : Prospects of Hydrogen Production from Waste for use in FCVs

Assefa, Getachew January 2000 (has links)
ORWARE, an evolving systems analysis based computer model is used to assess the performance of different waste management options from a life cycle perspective. The present version of the model consists of different submodels for transport, treatment, and disposal of different types of liquid and solid wastes and recycling of materials. Flows between submodels are described by a vector of several substances of different relevance to the system. The model calculates emissions to water and air, amount of residues returned to arable land and energy flows using the tools of life cycle analysis (LCA) and substance flow analysis (SFA). In going in the direction of stringent environmental standards and policies, there is a need for maximizing energy recovery from waste for both environmental and economic benefits. Sweden has already experience of recovering energy from waste for district heating. Recovering energy not only of high value but also of higher quality from waste would be of interest. Hydrogen is one carrier of such energy. The possibility of using hydrogen from waste as a fuel in the transport sector would contribute in heading for creating a clean environment. In this thesis a new submodel for steam reforming of biogas recovered from an anaerobic digester is developed and used with other submodels within the ORWARE framework. Four scenarios representing alternative ways of energy recovery from the organic waste in Stockholm have been simulated to compare the associated energy turnover and different environmental impacts. Digestion of the organic waste and using the biogas to fuel cars is compared against steam reforming of biogas to hydrogen or thermal gasification of the waste and processing the product gases to hydrogen. In the latter two cases hydrogen produced is used in fuel cell cars. Avoided impacts of using the biogas and hydrogen are analyzed using the fourth scenario where the waste is incinerated to generate heat and electricity. Functional equivalence between scenarios is achieved by external supply of heat, electricity and petrol. While recognizing the uncertainties during modelling and simulation, it is possible to conclude that the results indicate that there is advantage of reduced environmental impact and high energy turnover in introducing the technologies of producing hydrogen from waste into the waste management system. Further and thorough investigation is recommended to come up with a sound and firm conclusion. Key words: Systems analysis, Life cycle analysis, Substance flow analysis, Waste management, Environmental impact, Steam reforming, Thermal gasification, Fuel cell vehicles, Hydrogen <img src="http://www.webforum.com/form/kthima/images/spacer.gif" /> / www.ima.kth.se

Page generated in 0.0554 seconds