• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuel moisture and fuel dynamics in woodland and heathland vegetation of the Sydney Basin

Pippen, Brendan Gerard, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2008 (has links)
The vegetation of the Sydney Basin, Australia, is highly flammable and subject to a wide range of fire regimes. Sclerophyllous shrubs and sedges are common and in some vegetation types up to 70 % of fuel consumed during a fire can be live. Research into fire behaviour and fuel dynamics has been minimal. To address this issue this thesis investigated the principal factor affecting the ease of ignition and rate of combustion of individual fuel particles and fuel beds in bushfires: dead fine fuel moisture (FFM). Two common Sydney Basin vegetation types, eucalypt woodland and heathland, each with a history of problematic fire management, were measured in the field for diurnal fluctuations in FFM following rain, under conditions similar to when prescribed burns are conducted. The FFM components of current operational fire behaviour models were found to be inadequate for predictions of FFM and fire behaviour under these conditions. The equilibrium moisture content (EMC) of five fuel types from the field site was investigated in a laboratory study. An existing function describing EMC as a function of temperature and relative humidity was evaluated and found to be very accurate for these fuels. Two FFM predictive models incorporating this function were evaluated on the field data and the laboratory results were shown to be applicable to the estimation of FFM in the field. One model gave very accurate predictions of FFM below fibre saturation point, but its accuracy was reduced when screen level conditions were used instead of those measured at fuel level. A recent process-based model that accounts for rainfall showed promise for predicting when fuel is < 25 % FFM. Systematic problems with the radiation budget of this model reduced the accuracy of predictions and further refinement is required. Live fine fuel moisture content (LFMC) of common heathland shrubs and sedge was investigated over two years and found to be both seasonal and influenced by phenology. LFMC minima occurred in late winter and spring (August to October), and maxima were in summer (December to February) when new growth was recorded. The dominant near-surface fuel in mature heath was sedge. It was found to have little seasonal variation in its??? percentage dead but the percentage dead maxima occured at the same time as the LFMC minima of shrubs and sedge in both years. Simple instantaneous models for duff moisture content in woodland and heathland and LFMC and the percentage dead sedge in heathland were developed. The information gained by this study will form the basis for future development of fuel moisture models for prescribed burning guidelines and fire spread models specific to the vegetation communities of the Sydney Basin.
2

Effect of Slope and Aspect on Litter Layer Moisture Content of Lodgepole Pine Stands in the Eastern Slopes of the Rocky Mountains of Alberta

Gibos, Kelsy Ellen 06 April 2010 (has links)
For two fire seasons in Nordegg, Alberta, a system of in-stand weather stations were arranged along a north and south aligned valley and combined with collection of destructive fine fuel moisture content data in order to quantify variations due to differences in slope and aspect. South-facing sites were found to be slightly warmer (1.5°C), less humid (5%) and received on average 20% more solar radiation than the north-facing sites during the peak burning period of the day. Based on these weather observations a difference of 1 or 2 % moisture content between north and south sites was predicted using existing theoretical relationships. A corresponding difference in observed moisture content was not identified, due to the low transmittance recorded at the in-stand sites (<10% of open solar radiation measurements), variation amongst destructive samples and logistical limits on the number of replicates collected.
3

Effect of Slope and Aspect on Litter Layer Moisture Content of Lodgepole Pine Stands in the Eastern Slopes of the Rocky Mountains of Alberta

Gibos, Kelsy Ellen 06 April 2010 (has links)
For two fire seasons in Nordegg, Alberta, a system of in-stand weather stations were arranged along a north and south aligned valley and combined with collection of destructive fine fuel moisture content data in order to quantify variations due to differences in slope and aspect. South-facing sites were found to be slightly warmer (1.5°C), less humid (5%) and received on average 20% more solar radiation than the north-facing sites during the peak burning period of the day. Based on these weather observations a difference of 1 or 2 % moisture content between north and south sites was predicted using existing theoretical relationships. A corresponding difference in observed moisture content was not identified, due to the low transmittance recorded at the in-stand sites (<10% of open solar radiation measurements), variation amongst destructive samples and logistical limits on the number of replicates collected.
4

Fuel moisture and fuel dynamics in woodland and heathland vegetation of the Sydney Basin

Pippen, Brendan Gerard, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2008 (has links)
The vegetation of the Sydney Basin, Australia, is highly flammable and subject to a wide range of fire regimes. Sclerophyllous shrubs and sedges are common and in some vegetation types up to 70 % of fuel consumed during a fire can be live. Research into fire behaviour and fuel dynamics has been minimal. To address this issue this thesis investigated the principal factor affecting the ease of ignition and rate of combustion of individual fuel particles and fuel beds in bushfires: dead fine fuel moisture (FFM). Two common Sydney Basin vegetation types, eucalypt woodland and heathland, each with a history of problematic fire management, were measured in the field for diurnal fluctuations in FFM following rain, under conditions similar to when prescribed burns are conducted. The FFM components of current operational fire behaviour models were found to be inadequate for predictions of FFM and fire behaviour under these conditions. The equilibrium moisture content (EMC) of five fuel types from the field site was investigated in a laboratory study. An existing function describing EMC as a function of temperature and relative humidity was evaluated and found to be very accurate for these fuels. Two FFM predictive models incorporating this function were evaluated on the field data and the laboratory results were shown to be applicable to the estimation of FFM in the field. One model gave very accurate predictions of FFM below fibre saturation point, but its accuracy was reduced when screen level conditions were used instead of those measured at fuel level. A recent process-based model that accounts for rainfall showed promise for predicting when fuel is < 25 % FFM. Systematic problems with the radiation budget of this model reduced the accuracy of predictions and further refinement is required. Live fine fuel moisture content (LFMC) of common heathland shrubs and sedge was investigated over two years and found to be both seasonal and influenced by phenology. LFMC minima occurred in late winter and spring (August to October), and maxima were in summer (December to February) when new growth was recorded. The dominant near-surface fuel in mature heath was sedge. It was found to have little seasonal variation in its??? percentage dead but the percentage dead maxima occured at the same time as the LFMC minima of shrubs and sedge in both years. Simple instantaneous models for duff moisture content in woodland and heathland and LFMC and the percentage dead sedge in heathland were developed. The information gained by this study will form the basis for future development of fuel moisture models for prescribed burning guidelines and fire spread models specific to the vegetation communities of the Sydney Basin.
5

Fire behaviour and impact on heather moorland

Davies, Gwilym Matthew January 2006 (has links)
For roughly the past 200 years land-managers have used the practice of “muirburning” to manipulate the structure of heather (Calluna vulgaris) to create a patchwork of habitat structures able to provide forage and nesting sites for red grouse (Lagopus lagopus scoticus) as well as grazing for sheep (Ovis aries) and red deer (Cervus elaphus). This thesis investigates both the behaviour and impact of management fires in recognition of the need to develop multi-aim land management practices that ensure both continued productivity and protection of biodiversity in the face of climatic and environmental change. Fuel structure and loading are crucial controlling factors on both fire behaviour and impact governing both rate of spread and heat release to the ground surface. A visual obstruction method is developed that estimates total and fine fuel loading as well as the structure of the heather canopy. In order to adequately understand fire impact a dimensional analysis approach is taken to estimating the mass of burnt heather stems. Experiments at a number of spatial and temporal scales relate variation in heather fuel moisture content to stand structure and variation in weather conditions. Monitoring shows moisture contents to be relatively stable temporally, but spatially variable. Periods of extreme low moisture contents in early spring are associated with frozen ground, winter cuticle damage and physiological drought. Such conditions may have contributed to the large number of wildfires in 2003. A replicated plot design was used to investigate the effect of weather conditions and fuel loading on fire behaviour. An empirical approach is taken to fire behaviour modelling with equations describing rate of spread and fireline intensity being developed on the basis of fuel structure descriptors and windspeed. The theoretical negative correlation between fuel bed density and rate of spread is demonstrated to hold true for heather stands, while the impact of heterogeneity in fuel bed structure is also investigated. Redundancy Analysis is used to investigate the influence of multiple predictors on a number of aspects of fire behaviour including: rate of spread, fireline intensity, flame length and ground surface heating. Data from this and previous studies are used to ground-truth a number of fire behaviour prediction systems including BehavePlus and the Canadian Fire Behaviour Prediction System. Finally linkages between fire behaviour, fire severity and heather regeneration are investigated. A number of proxy measures of ‘Immediate Severity’ are tested and used to examine the influence of fires on plant regeneration. The post-fire development of stands is shown to relate primarily to stand age and structure before burning, and to post-fire substrates rather than variation in fire behaviour and severity.

Page generated in 0.1243 seconds