• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportement de l'or dans les magmas calco-alcalins – Approche expérimentale et géochimique sur le magmatisme adakitique de Nord-Luzon (Philippines).

Jégo, Sébastien 27 September 2007 (has links) (PDF)
Les gisements minéraux à Au-Cu-Mo constituent des ressources métalliques majeures connues pour être associées spatio-temporellement au magmatisme intrusif d'arc, et en particulier au magmatisme adakitique dont la pétrogenèse est singulière. Bien que la plus grande partie des métaux semble trouver son origine dans les magmas, il n'y a pas encore de consensus quant aux processus responsables de leur concentration. Le fait que les minéraux primaires contenant le minerai soient de façon prépondérante des sulfures a conduit à la suggestion que le soufre joue un rôle important dans l'enrichissement métallique au stade magmatique. Les études expérimentales précédentes ont montré que les sulfures peuvent largement fractionner Au à partir du liquide magmatique, concluant que les magmas oxydés sont potentiellement plus riches en or. Ici, nous avons effectué des expériences haute température-haute pression sur cinq roches naturelles des Philippines, sur une gamme de fO2 allant de conditions réductrices à très oxydantes. Les expériences ont été menées dans des capsules d'or pur en présence de quantités variables d'eau, et avec ou sans ajout de soufre. Nos données montrent que la solubilité d'or des charges sans soufre est basse mais augmente globalement avec la fO2. Dans les charges soufrées, elle apparaît beaucoup plus forte quand l'environnement est réducteur ou moyennement oxydant. Cette étude montre que le transport et la concentration de Au dans les liquides silicatés peut être augmentée de façon spectaculaire par la présence de soufre. L'enrichissement en or dans les gisements minéraux peut ainsi être directement lié à l'incorporation et à l'abondance de soufre dans les magmas.
2

Redox - pressure - temperature conditions in the continental upper mantle in relation to C-O-H fluid speciation / Conditions redox – pression – température dans le manteau supérieur en domaine continental en relation avec la nature des fluides C-O-H

Goncharov, Aleksey 08 March 2012 (has links)
La thèse est basée sur une étude pétrologique et géochimique de xénolites mantelliques provenant du centre du craton sibérien et de l’Asie centrale entre le lac Baïkal et la Mongolie. Le but est d’établir l'état redox du manteau lithosphérique continental dans ces deux domaines géodynamiques distincts (ancien craton, ceinture mobile phanérozoïque) et mettre la fugacité d’oxygène en relation avec le régime thermique et la spéciation des fluides C-O-H. Les fugacités d’oxygène sont calculées sur la base des rapports Fe2+/Fe3+ dans les minéraux (spinelles et grenats) de péridotites, obtenus par spectrométrie Mössbauer. En détail, l’étude porte sur : (i) les microstructures et la composition minéralogique et chimique des xénolites ; (ii) les rapports Fe2+/Fe3+ dans les minéraux par spectrométrie Mössbauer; (iii) les températures et pressions d’équilibration des xénolites; (iv) la fugacité d’oxygène à partir des compositions des minéraux; (v) la spéciation des fluides C-O-H coexistant avec les roches mantelliques. Les résultats supportent les trois conclusions majeures. (1) La fugacité d’oxygène dans le manteau Iithosphérique au centre du craton sibérien décroît de +1 à -4 ΔlogʄO2 (FMQ) entre 70 et 220 km, accompagnée de variations latérales significatives. (2) L’état redox du manteau lithosphérique en Asie centrale est très hétérogène avec une décroissance importante lors de la transition spinelle-grenat de +0 à -3 ΔlogʄO2 (FMQ) à 50-90 km. (3) La spéciation des fluides C-O-H évolue avec la profondeur depuis H2O-CO2 en haut du manteau vers H2O-CH4 à la limite lithosphère-asthénosphère, indépendamment du profil thermique et de l’épaisseur de la lithosphère / The thesis is based on a petrologic and geochemical study of mantle xenoliths from the central Siberian craton and the Baikal-Mongolia region of central Asia. Its goal is to establish the redox regime of the lithospheric mantle in these two domains with distinct tectonic settings and age and relate it to thermal regime and the speciation of C-0-H fluids. Oxygen fugacity is calculated based on Fe2+/Fe3+ ratios in spinel and garnet of mantle peridotites obtained by Mössbauer spectroscopy. The study deals with the following topics: (i) microstructures, chemical and mineralogical composition of the xenoliths; (ii) Fe2+/Fe3+ ratios in minerals by Mössbauer spectroscopy; (iii) equilibration temperatures and pressures using mineral thermo-barometry; (iv) oxygen fugacity from mineral compositions using oxybarometry; (v) proportions of molecular components in C-0-H fluids coexisting with the studied rocks. The three main conclusions of this study are: (1) Oxygen fugacity in the lithospheric mantle in the central Siberian craton decreases from +1 to -4 ΔlogʄO2 (FMQ) at depths from 70 to 220 km and shows significant lateral variations. (2) The lithospheric mantle beneath the Baikal-Mongolia region shows important redox heterogeneities, with a sharp decrease in oxygen fugacity (from +0 to -3 AlogfO2 (FMQ)) during the transition from the spine! to garnet facies peridotites at 50 to 90 km. (3) The speciation of C-O-H fluids changes with depth from essentially H2O-CO2 in the shallow lithospheric mantle to H2O-CH4 at the lithosphere-asthenosphere boundary regardless of the thermal state and the thickness of the lithosphere
3

Métamorphisme d'une chondrite à enstatite nommée Indarch : implication sur les phénomènes de différenciation planétaire. Application à la Terre

Berthet, Sophie 09 July 2009 (has links) (PDF)
Les chondrites à enstatite partagent un réservoir commun de l'isotope de l'oxygène avec la Terre et la Lune. Cette caractéristique soulève la question d'une possible participation de ce type de météorites à la construction de la Terre. Egalement, l'étude des chondrites à enstatite permet d'apporter de nouvelles contraintes pour comprendre plus en détail l'histoire de la différenciation de petits corps planétaires soumis à des conditions réductrices. La première étude expérimentale systématique à haute pression et haute température d'une chondrite à enstatite a ainsi été mise en oeuvre, entre 1 et 25 GPa, et entre 1200°C et 2500°C, couvrant ainsi les conditions de pression et de température du manteau supérieur terrestre. La météorite qui a été choisie pour cette étude s'appelle Indarch. Il s'agit d'une chondrite à enstatite de type EH4. A 1 GPa, l'effet de la fO2 sur les relations de phases de la météorite, ainsi que sur les coefficients de partage entre métal et silicate liquide des éléments S, Si, Cr, Mn, Ni, et Mo est étudié spécifiquement. Les phases silicatées et métalliques subissent de grands changements lorsque la fO2 varie de IW-1.5 à IW-4.5. Des monosulfures contenant les éléments (Fe, Mg, Mn, Ca, Cr) sont présents aux fO2 les plus réduites. La phase métallique de nos échantillons est toujours liquide et comprend deux phases immiscibles riches en fer : l'une pauvre en S et riche en C, et l'autre riche en S et pauvre en C. La phase riche en C est également riche en Si aux fO2 les plus réduites. Les relations de phases d'Indarch ont été déterminées entre 3 et 25 GPa, et entre 1500°C et 2500°C, nous permettant de proposer le premier diagramme de phases en pression et température pour une chondrite à enstatite. La phase métallique est toujours liquide et il s'agit d'un alliage Fe-Ni-S à ces plus hautes pressions. La formation d'un noyau planétaire à basse pression (0 à 5 GPa) sous des conditions très réductrices ne peut expliquer les appauvrissements observés de S dans les manteaux silicatés alors que plusieurs wt% de Si pourront être piégés dans le noyau. En revanche, à plus haute pression, l'incorporation de S dans le noyau sera facilitée sous des conditions plus oxydantes. Finalement, notre étude permet de proposer un modèle d'évolution d'un matériau chondritique en cours d'accrétion sous des conditions rédox variables
4

Sulfur behavior and redox conditions in Etnean hydrous basalts inferred from melt inclusions and experimental glasses / Le comportement du soufre et les conditions d'oxydoréduction dans les basaltes hydratés de l'Etna inférés par des inclusions vitreuses et des verres expérimentaux

Gennaro, Mimma Emanuela 22 February 2017 (has links)
Le soufre est un composant volatil important des magmas qui présente différents états d'oxydation en fonction des conditions d’oxydoréduction et de la phase dans laquelle il se trouve : dans le liquide silicaté, il est typiquement dissous comme S⁶⁺ et/ou S²⁻ , dans la phase gazeuse il se trouve principalement comme SO₂ (S⁴⁺ ) et H₂S (S²⁻). L’Etna, pour lequel les conditions d’oxydoréduction sont faiblement contraintes, est utilisée comme cas d’étude pour examiner le comportement du soufre dans les magmas basaltiques hydratés pendant la différenciation et le dégazage. Cette recherche combine l'étude des inclusions vitreuses avec une étude expérimentale en conditions magmatiques sur la solubilité du S dans les basaltes alcalins hydratés.Les résultats expérimentaux suggèrent l’important contrôle de la ƒO₂ sur la teneur en S dans les magmas hydratés de l’Etna, et le partage du S entre les phases fluid and liquid. Les inclusions vitreuses ont été piégées à différentes profondeurs à l'intérieur du système magmatique. Elles décrivent une tendance continue de différenciation, marquée par une cristallisation fractionnée, à partir de la composition picritique (FS) vers le basalte plus récent dégazé (2013). Le contenu en S dans le liquide de l'Etna est extrêmement variable et atteint 4150 ppm dans les inclusions vitreuses les plus primitives. Les spectres XANES Fe³⁺/ΣFe des certaines inclusions vitreuses donnent des rapports Fe³⁺/ΣFe généralement décroissants à partir du liquide le plus primitif (FS) jusqu’au plus évolué (2013). Les simulations effectué par le logiciel MELTS confirme que la diminution du rapport Fe³⁺/ΣFe est principalement due au processus de différenciation magmatique, renforcé par le dégazage du S à ƒO₂ < NNO + 1. Cette réduction du magma provoque à son tour la diminution de la solubilité du S dans les basaltes hydratés de l’Etna, et peut constituer un éventuel activateur de l’exsolution du S, à l’origine de l’important dégazage du S observé au cours des dernières décennies à l’Etna. / Sulfur is an important volatile component of magmas that presents different oxidation states, depending on the redox conditions and on the phase of occurrence: in silicate melts it is typically dissolved as S⁶⁺ and/or S²⁻ , in the gas phase it occurs principally as SO₂ (S⁴⁺ ) and H₂S (S²⁻). Mount Etna, in which magmatic redox conditions are poorly constrained, is used as a case study to investigate sulfur behavior in hydrous basaltic magmas during magma differentiation and degassing. This research integrates the study of natural olivine-hosted melt inclusions with an experimental study on S solubility in hydrous alkali basalts at magmatic conditions.Experimental results suggest the important control of ƒO₂ on the S abundance in Etnean hydrous magma and its partitioning between fluid and melt phases. Melt inclusions were entrapped at different depths inside the magmatic system (up to ~ 18 km, below crater level). They delineate a continuous differentiation trend, marked by fractional crystallization, from the picritic basalt (FS) toward the most evolved and degassed (2013) basalt. S content in Etnean melt is extremely variable and reaches 4150 ppm in the primitive melt inclusions. XANES Fe³⁺/ΣFe spectra in some glass inclusions, resulted in the generally decreasing of Fe³⁺/ΣFe ratios from the most primitive (FS) to the most evolved (2013) melts. MELTS software confirms that the Fe³⁺/ΣFe decrease is due principally to the melt differentiation process, enhanced to the S degassing at ƒO₂ < NNO+1. Magma reduction, in turn, induces the decrease of the sulfur solubility in the hydrous Etnean basalt, as well as of the sulfide saturation, and may constitute a possible enhancer of S exsolution, triggering the important S degassing observed in the last decades in Mt. Etna.
5

Métamorphisme d'une chondrite à enstatite nommée Indarch : implication sur les phénomènes de différenciation planétaire. Application à la Terre / Metamorphism of an enstatite chondrite named Indarch : implications of planetary differentiation processes. Application to the Earth

Berthet, Sophie 09 July 2009 (has links)
Les chondrites à enstatite partagent un réservoir commun de l’isotope de l’oxygène avec la Terre et la Lune. Cette caractéristique soulève la question d’une possible participation de ce type de météorites à la construction de la Terre. Egalement, l’étude des chondrites à enstatite permet d’apporter de nouvelles contraintes pour comprendre plus en détail l’histoire de la différenciation de petits corps planétaires soumis à des conditions réductrices. La première étude expérimentale systématique à haute pression et haute température d’une chondrite à enstatite a ainsi été mise en oeuvre, entre 1 et 25 GPa, et entre 1200°C et 2500°C, couvrant ainsi les conditions de pression et de température du manteau supérieur terrestre. La météorite qui a été choisie pour cette étude s’appelle Indarch. Il s’agit d’une chondrite à enstatite de type EH4. A 1 GPa, l’effet de la fO2 sur les relations de phases de la météorite, ainsi que sur les coefficients de partage entre métal et silicate liquide des éléments S, Si, Cr, Mn, Ni, et Mo est étudié spécifiquement. Les phases silicatées et métalliques subissent de grands changements lorsque la fO2 varie de IW-1.5 à IW-4.5. Des monosulfures contenant les éléments (Fe, Mg, Mn, Ca, Cr) sont présents aux fO2 les plus réduites. La phase métallique de nos échantillons est toujours liquide et comprend deux phases immiscibles riches en fer : l’une pauvre en S et riche en C, et l’autre riche en S et pauvre en C. La phase riche en C est également riche en Si aux fO2 les plus réduites. Les relations de phases d’Indarch ont été déterminées entre 3 et 25 GPa, et entre 1500°C et 2500°C, nous permettant de proposer le premier diagramme de phases en pression et température pour une chondrite à enstatite. La phase métallique est toujours liquide et il s’agit d’un alliage Fe-Ni-S à ces plus hautes pressions. La formation d’un noyau planétaire à basse pression (0 à 5 GPa) sous des conditions très réductrices ne peut expliquer les appauvrissements observés de S dans les manteaux silicatés alors que plusieurs wt% de Si pourront être piégés dans le noyau. En revanche, à plus haute pression, l’incorporation de S dans le noyau sera facilitée sous des conditions plus oxydantes. Finalement, notre étude permet de proposer un modèle d’évolution d’un matériau chondritique en cours d’accrétion sous des conditions rédox variables / Enstatite chondrites share a common oxygen reservoir with Earth and Moon. This suggests that these meteorites may have participated to the building of the planet Earth. Studying enstatite chondrites will bring constraints for a better understanding of the differentiation history of planetesimals under reducing conditions. Thus, this is the first systematic study at HP-HT of an enstatite chondrite between 1 and 25 GPa, and between 1200°C et 2500°C, covering the pressure and temperature conditions of the terrestrial upper mantle. The meteorite, which was chosen for this study, is named Indarch. It is an enstatite chondrite, type EH4. At 1 GPa, the effect of the fO2 on the phase relations of the meteorite, as well as on the partitioning behavior between liquid metal and liquid of S, Si, Cr, Mn, Ni, et Mo is studied. Silicate and metallic phases undergo significant changes while the fO2 varies from IW-1.5 to IW-4.5. (Fe, Mg, Mn, Ca, Cr)-bearing monosulfides are observed at the lowest fO2’s. The me-tallic phase in our samples is always liquid and comprises of two immiscible Fe-rich phases : one S-poor and C-rich, and the other S-rich and C-poor. The C-rich phase is also rich in Si at the most reduced fO2’s. Between 3 and 25 GPa, 1500°C and 2500°C, the phase relations of Indarch have been inquired and allow us to present the first P-T phase diagram for an enstatite chondrite. The metallic phase is always liquid, and at these high pressures, it is a Fe-Ni-S alloy. The observed depletions of S in silicate mantles cannot be explained by a core formation at low pressure (0 à 5 GPa) under reducing conditions, however several wt% of Si could be trapped in the core. At higher pressure, more oxidized conditions will facilitate S incorporation in the core. Final-ly, our study proposes a model of evolution of an accreting chondritic material under variable redox conditions

Page generated in 0.0379 seconds