1 |
The relationship between traffic congestion and road accidents : an econometric approach using GISWang, Chao January 2010 (has links)
Both traffic congestion and road accidents impose a burden on society, and it is therefore important for transport policy makers to reduce their impact. An ideal scenario would be that traffic congestion and accidents are reduced simultaneously, however, this may not be possible since it has been speculated that increased traffic congestion may be beneficial in terms of road safety. This is based on the premise that there would be fewer fatal accidents and the accidents that occurred would tend to be less severe due to the low average speed when congestion is present. If this is confirmed then it poses a potential dilemma for transport policy makers: the benefit of reducing congestion might be off-set by more severe accidents. It is therefore important to fully understand the relationship between traffic congestion and road accidents while controlling for other factors affecting road traffic accidents. The relationship between traffic congestion and road accidents appears to be an under researched area. Previous studies often lack a suitable congestion measurement and an appropriate econometric model using real-world data. This thesis aims to explore the relationship between traffic congestion and road accidents by using an econometric and GIS approach. The analysis is based on the data from the M25 motorway and its surrounding major roads for the period 2003-2007. A series of econometric models have been employed to investigate the effect of traffic congestion on both accident frequency (such as classical Negative Binomial and Bayesian spatial models) and accident severity (such as ordered logit and mixed logit models). The Bayesian spatial model and the mixed logit model are the best models estimated for accident frequency and accident severity analyses respectively. The model estimation results suggest that traffic congestion is positively associated with the frequency of fatal and serious injury accidents and negatively (i.e. inversely) associated with the severity of accidents that have occurred. Traffic congestion is found to have little impact on the frequency of slight injury accidents. Other contributing factors have also been controlled for and produced results consistent with previous studies. It is concluded that traffic congestion overall has a negative impact on road safety. This may be partially due to higher speed variance among vehicles within and between lanes and erratic driving behaviour in the presence of congestion. The results indicate that mobility and safety can be improved simultaneously, and therefore there is significant additional benefit of reducing traffic congestion in terms of road safety. Several policy implications have been identified in order to optimise the traffic flow and improve driving behaviour, which would be beneficial to both congestion and accident reduction. This includes: reinforcing electronic warning signs and the Active Traffic Management, enforcing average speed on a stretch of a roadway and introducing minimum speed limits in the UK. This thesis contributes to knowledge in terms of the relationship between traffic congestion and road accidents, showing that mobility and safety can be improved simultaneously. A new hypothesis is proposed that traffic congestion on major roads may increase the occurrence of serious injury accidents. This thesis also proposes a new map-matching technique so as to assign accidents to the correct road segments, and shows how a two-stage modelling process which combines both accident frequency and severity models can be used in site ranking with the objective of identifying hazardous accident hotspots for further safety examination and treatment.
|
2 |
Multi-level Safety Performance Functions For High Speed FacilitiesAhmed, Mohamed 01 January 2012 (has links)
High speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the safety of these high speed facilities to ensure better and efficient operation. Safety problems could be assessed through several approaches that can help in mitigating the crash risk on long and short term basis. Therefore, the main focus of the research in this dissertation is to provide a framework of risk assessment to promote safety and enhance mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were developed at the aggregate level using historical crash data and the corresponding exposure and risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were developed at the disaggregate level utilizing real-time weather data collected from meteorological stations located at the freeway section as well as traffic flow parameters collected from different detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to turbulent traffic conditions and their interactions with other risk factors. In this study, two main datasets were obtained from two different regions. Those datasets comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic parameters as well as real-time weather and traffic data. iii At the aggregate level, Bayesian hierarchical models with spatial and random effects were compared to Poisson models to examine the safety effects of roadway geometrics on crash occurrence along freeway sections that feature mountainous terrain and adverse weather. At the disaggregate level; a main framework of a proactive safety management system using traffic data collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. Different statistical techniques were implemented. These techniques ranged from classical frequentist classification approaches to explain the relationship between an event (crash) occurring at a given time and a set of risk factors in real time to other more advanced models. Bayesian statistics with updating approach to update beliefs about the behavior of the parameter with prior knowledge in order to achieve more reliable estimation was implemented. Also a relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was utilized to calibrate several models utilizing different datasets collected from mixed detection systems as well as real-time meteorological stations. The results from this study suggest that both levels of analyses are important, the aggregate level helps in providing good understanding of different safety problems, and developing policies and countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time safety functions help toward more proactive traffic management system that will not only enhance the performance of the high speed facilities and the whole traffic network but also provide safer mobility for people and goods. In general, the proposed multi-level analyses are useful in providing roadway authorities with detailed information on where countermeasures must be implemented and when resources should be devoted. The study also proves that traffic data collected from different detection systems could be a useful asset that should be utilized iv appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. The overall proposed framework can maximize the benefit of the existing archived data for freeway authorities as well as for road users.
|
Page generated in 0.0632 seconds